找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Hamiltonian Mechanics; Gerardo F. Torres del Castillo Textbook 2018 Springer Nature Switzerland AG 2018 inertia tensor.

[復(fù)制鏈接]
查看: 14380|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:52:58 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Hamiltonian Mechanics
影響因子2023Gerardo F. Torres del Castillo
視頻videohttp://file.papertrans.cn/156/155275/155275.mp4
發(fā)行地址Presents a precise definition and examples of the symmetries of a Hamiltonian, including transformations that depend explicitly on the time.Contains the definition and examples of R-separable solution
學(xué)科分類Birkh?user Advanced Texts‘ Basler Lehrbücher
圖書封面Titlebook: An Introduction to Hamiltonian Mechanics;  Gerardo F. Torres del Castillo Textbook 2018 Springer Nature Switzerland AG 2018 inertia tensor.
影響因子This textbook examines the Hamiltonian formulation in classical mechanics with the basic mathematical tools of multivariate calculus. It explores topics like variational symmetries, canonoid transformations, and geometrical optics that are usually omitted from an introductory classical mechanics course. For students with only a basic knowledge of mathematics and physics, this book makes those results accessible through worked-out examples and well-chosen exercises..For readers not familiar with Lagrange equations, the first chapters are devoted to the Lagrangian formalism and its applications. Later sections discuss canonical transformations, the Hamilton–Jacobi equation, and the Liouville Theorem on solutions of the Hamilton–Jacobi equation.?.Graduate and advanced undergraduate students in physics or mathematics who are interested in mechanics and applied math will benefit from this treatment of analytical mechanics. The textassumes the basics of classical mechanics, as well as linear algebra, differential calculus, elementary differential equations and analytic geometry. Designed for self-study, this book includes detailed examples and exercises with complete solutions, although
Pindex Textbook 2018
The information of publication is updating

書目名稱An Introduction to Hamiltonian Mechanics影響因子(影響力)




書目名稱An Introduction to Hamiltonian Mechanics影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics網(wǎng)絡(luò)公開度




書目名稱An Introduction to Hamiltonian Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics被引頻次




書目名稱An Introduction to Hamiltonian Mechanics被引頻次學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics年度引用




書目名稱An Introduction to Hamiltonian Mechanics年度引用學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics讀者反饋




書目名稱An Introduction to Hamiltonian Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:20:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:39 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:18 | 只看該作者
5#
發(fā)表于 2025-3-22 09:46:10 | 只看該作者
Rigid Bodies,nt particles such that the distances between them are constant. Even though, in essence, this example is similar to those already considered, the expression of the kinetic energy of a rigid body involves a more elaborate process and the definition of a new object (the inertia tensor)
6#
發(fā)表于 2025-3-22 16:42:46 | 只看該作者
7#
發(fā)表于 2025-3-22 18:05:10 | 只看該作者
https://doi.org/10.1007/978-3-662-38552-4As we have seen in the preceding chapter, the equations of motion of a mechanical system subject to holonomic constraints, with forces derivable from a potential, can be expressed in terms of a single function.
8#
發(fā)表于 2025-3-22 22:25:05 | 只看該作者
9#
發(fā)表于 2025-3-23 01:47:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:25 | 只看該作者
The Lagrangian Formalism,In this chapter we show that the equations of motion of certain mechanical systems, obtained from Newton’s second law, can be expressed in a convenient manner in terms of a single real-valued function.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 02:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江陵县| 罗江县| 兴和县| 安西县| 嘉祥县| 鱼台县| 美姑县| 安远县| 永善县| 中阳县| 南城县| 安宁市| 重庆市| 巫溪县| 澄迈县| 博客| 民乐县| 通江县| 清水河县| 遂宁市| 铁岭县| 密云县| 曲靖市| 温泉县| 白河县| 马尔康县| 威宁| 巫溪县| 蓬安县| 安西县| 高陵县| 剑阁县| 潮安县| 扬州市| 尼勒克县| 大宁县| 襄城县| 凤山市| 霍山县| 额济纳旗| 江城|