找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Hamiltonian Mechanics; Gerardo F. Torres del Castillo Textbook 2018 Springer Nature Switzerland AG 2018 inertia tensor.

[復(fù)制鏈接]
查看: 14384|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:52:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to Hamiltonian Mechanics
影響因子2023Gerardo F. Torres del Castillo
視頻videohttp://file.papertrans.cn/156/155275/155275.mp4
發(fā)行地址Presents a precise definition and examples of the symmetries of a Hamiltonian, including transformations that depend explicitly on the time.Contains the definition and examples of R-separable solution
學(xué)科分類Birkh?user Advanced Texts‘ Basler Lehrbücher
圖書封面Titlebook: An Introduction to Hamiltonian Mechanics;  Gerardo F. Torres del Castillo Textbook 2018 Springer Nature Switzerland AG 2018 inertia tensor.
影響因子This textbook examines the Hamiltonian formulation in classical mechanics with the basic mathematical tools of multivariate calculus. It explores topics like variational symmetries, canonoid transformations, and geometrical optics that are usually omitted from an introductory classical mechanics course. For students with only a basic knowledge of mathematics and physics, this book makes those results accessible through worked-out examples and well-chosen exercises..For readers not familiar with Lagrange equations, the first chapters are devoted to the Lagrangian formalism and its applications. Later sections discuss canonical transformations, the Hamilton–Jacobi equation, and the Liouville Theorem on solutions of the Hamilton–Jacobi equation.?.Graduate and advanced undergraduate students in physics or mathematics who are interested in mechanics and applied math will benefit from this treatment of analytical mechanics. The textassumes the basics of classical mechanics, as well as linear algebra, differential calculus, elementary differential equations and analytic geometry. Designed for self-study, this book includes detailed examples and exercises with complete solutions, although
Pindex Textbook 2018
The information of publication is updating

書目名稱An Introduction to Hamiltonian Mechanics影響因子(影響力)




書目名稱An Introduction to Hamiltonian Mechanics影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics網(wǎng)絡(luò)公開度




書目名稱An Introduction to Hamiltonian Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics被引頻次




書目名稱An Introduction to Hamiltonian Mechanics被引頻次學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics年度引用




書目名稱An Introduction to Hamiltonian Mechanics年度引用學(xué)科排名




書目名稱An Introduction to Hamiltonian Mechanics讀者反饋




書目名稱An Introduction to Hamiltonian Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:20:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:39 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:18 | 只看該作者
5#
發(fā)表于 2025-3-22 09:46:10 | 只看該作者
Rigid Bodies,nt particles such that the distances between them are constant. Even though, in essence, this example is similar to those already considered, the expression of the kinetic energy of a rigid body involves a more elaborate process and the definition of a new object (the inertia tensor)
6#
發(fā)表于 2025-3-22 16:42:46 | 只看該作者
7#
發(fā)表于 2025-3-22 18:05:10 | 只看該作者
https://doi.org/10.1007/978-3-662-38552-4As we have seen in the preceding chapter, the equations of motion of a mechanical system subject to holonomic constraints, with forces derivable from a potential, can be expressed in terms of a single function.
8#
發(fā)表于 2025-3-22 22:25:05 | 只看該作者
9#
發(fā)表于 2025-3-23 01:47:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:25 | 只看該作者
The Lagrangian Formalism,In this chapter we show that the equations of motion of certain mechanical systems, obtained from Newton’s second law, can be expressed in a convenient manner in terms of a single real-valued function.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 11:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通河县| 岱山县| 聊城市| 庆城县| 盱眙县| 云梦县| 苏尼特左旗| 宜黄县| 水富县| 石城县| 古丈县| 嘉祥县| 三明市| 宜昌市| 武陟县| 许昌市| 普兰店市| 健康| 石家庄市| 龙井市| 牡丹江市| 奉贤区| 江川县| 乌兰县| 金川县| 祁东县| 阿克苏市| 德保县| 全南县| 华宁县| 阿拉善右旗| 海原县| 鄂伦春自治旗| 甘孜| 祁阳县| 兴文县| 故城县| 巢湖市| 上思县| 改则县| 密山市|