找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases; Analysis, Algorithms Francis X. Giraldo Textbook 2020 The Editor

[復(fù)制鏈接]
樓主: 正當理由
41#
發(fā)表于 2025-3-28 16:15:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:01:41 | 只看該作者
An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases978-3-030-55069-1Series ISSN 1611-0994 Series E-ISSN 2197-179X
43#
發(fā)表于 2025-3-29 01:36:31 | 只看該作者
https://doi.org/10.1007/978-3-662-26063-0the choices that we have at our disposal. We can categorize the possible methods as follows: .Generally speaking, the most widely used differential form method is the finite difference method while the most widely used integral form method is the Galerkin method (e.g., finite elements).
44#
發(fā)表于 2025-3-29 03:12:03 | 只看該作者
45#
發(fā)表于 2025-3-29 08:07:11 | 只看該作者
https://doi.org/10.1007/978-3-322-87118-3onservation laws for both CG and DG. However, these types of equations are entirely hyperbolic (first order equations in these cases). In this chapter we learn how to use the CG method to discretize second order equations that are elliptic.
46#
發(fā)表于 2025-3-29 14:30:40 | 只看該作者
47#
發(fā)表于 2025-3-29 16:18:08 | 只看該作者
48#
發(fā)表于 2025-3-29 21:51:36 | 只看該作者
1611-0994 s. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, includingboth scalar PDEs and systems of equations..978-3-030-55071-4978-3-030-55069-1Series ISSN 1611-0994 Series E-ISSN 2197-179X
49#
發(fā)表于 2025-3-30 00:37:59 | 只看該作者
50#
發(fā)表于 2025-3-30 04:18:41 | 只看該作者
1611-0994 r understand the material clearly and assists them in buildi.This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣汉县| 防城港市| 嘉荫县| 博兴县| 湟中县| 景德镇市| 扎囊县| 武胜县| 崇阳县| 清徐县| 武平县| 嘉兴市| 邵阳市| 舟曲县| 温宿县| 永德县| 团风县| 句容市| 梅河口市| 华容县| 花莲市| 南川市| 亳州市| 张北县| 揭西县| 泰来县| 荥经县| 深泽县| 英德市| 健康| 蒙阴县| 元朗区| 靖江市| 民县| 临颍县| 井冈山市| 池州市| 昌乐县| 昭平县| 夏邑县| 武义县|