找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases; Analysis, Algorithms Francis X. Giraldo Textbook 2020 The Editor

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:13:55 | 只看該作者
978-3-030-55071-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
22#
發(fā)表于 2025-3-25 09:32:53 | 只看該作者
Overview of Galerkin Methodsthe choices that we have at our disposal. We can categorize the possible methods as follows: .Generally speaking, the most widely used differential form method is the finite difference method while the most widely used integral form method is the Galerkin method (e.g., finite elements).
23#
發(fā)表于 2025-3-25 12:26:58 | 只看該作者
Numerical Integration in One Dimensionus . and . are element and trace integrals, respectively. By element integrals we mean either area or volume integrals in 2D and 3D, respectively. By trace integrals we mean integrals along the boundary of the element which could be line or surface area integrals in 2D and 3D, respectively.
24#
發(fā)表于 2025-3-25 19:28:11 | 只看該作者
1D Continuous Galerkin Methods for Elliptic Equationsonservation laws for both CG and DG. However, these types of equations are entirely hyperbolic (first order equations in these cases). In this chapter we learn how to use the CG method to discretize second order equations that are elliptic.
25#
發(fā)表于 2025-3-25 21:26:49 | 只看該作者
Interpolation in Multiple Dimensionso and three dimensions. In one dimension, there is no room to choose the shape of the domain. That is, in the domain .?∈?[?1, +1] we are constrained to line elements. However, in two dimensions this door is flung wide open and we are now free to choose all sorts of polygons as the basic building blocks of our interpolation.
26#
發(fā)表于 2025-3-26 04:01:38 | 只看該作者
2D Continuous Galerkin Methods for Hyperbolic Equationsly. In Ch. . we introduced the extension of the CG method to two dimensions by describing its implementation for elliptic partial differential equations (PDEs). In this chapter we extend the CG method for the application of hyperbolic equations in two dimensions. We also discuss the addition of diffusion operators.
27#
發(fā)表于 2025-3-26 08:24:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:05:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:23 | 只看該作者
30#
發(fā)表于 2025-3-26 18:57:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安吉县| 寻乌县| 清涧县| 普定县| 建瓯市| 宁津县| 德兴市| 安徽省| 额济纳旗| 建水县| 安宁市| 赫章县| 长沙县| 依兰县| 长武县| 南宁市| 本溪市| 金坛市| 延安市| 拜泉县| 湘乡市| 富宁县| 渑池县| 酒泉市| 宾川县| 襄樊市| 陆良县| 曲麻莱县| 苏尼特左旗| 云安县| 孝昌县| 当阳市| 合江县| 台中市| 哈巴河县| 偏关县| 竹北市| 西昌市| 甘谷县| 理塘县| 邹平县|