找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
41#
發(fā)表于 2025-3-28 14:46:36 | 只看該作者
42#
發(fā)表于 2025-3-28 20:48:49 | 只看該作者
https://doi.org/10.1007/978-3-662-41370-8sitions represent many natural phenomena or engineering processes. We shall introduce few particular bifurcations, viz., saddle-node (fold), period-doubling (flip), period-bubbling, pitchfork, transcritical?bifurcations, and Neimark-Sacker codimension-2 bifurcation?in this chapter.
43#
發(fā)表于 2025-3-28 23:01:51 | 只看該作者
Stability Theory,quations rigorous mathematical definitions are often too restrictive in analyzing the stability of solutions.?We begin with the stability analysis of linear systems. The normal form analysis for stable, unstable and center manifolds, and the center manifold reduction are discussed.
44#
發(fā)表于 2025-3-29 03:05:55 | 只看該作者
45#
發(fā)表于 2025-3-29 10:36:51 | 只看該作者
Symmetry Analysis,ce of symmetry, particularly in analyzing nonlinear systems we devote this chapter on basic idea of group of transformations, Lie group of transformations,?Lie group of transformations, some theorems on Lie symmetry, its invariance,?Invariance principle and algorithm, and symmetry analysis of some physical?systems.
46#
發(fā)表于 2025-3-29 12:13:58 | 只看該作者
47#
發(fā)表于 2025-3-29 17:55:35 | 只看該作者
48#
發(fā)表于 2025-3-29 23:46:58 | 只看該作者
Continuous Dynamical Systems,eir trajectories cannot be represented by usual geometry.?In this chapter we discuss some important definitions, concept of flows, their properties, examples, and analysis of one-dimensional flows for an easy way to understand the nonlinear dynamical systems.
49#
發(fā)表于 2025-3-29 23:54:44 | 只看該作者
50#
發(fā)表于 2025-3-30 07:55:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
毕节市| 永吉县| 达孜县| 贵溪市| 秦安县| 绥江县| 金塔县| 蓬莱市| 浮梁县| 贵德县| 璧山县| 泽普县| 呼玛县| 华蓥市| 海淀区| 仁化县| 时尚| 竹溪县| 扶绥县| 汽车| 体育| 同心县| 霍林郭勒市| 苏尼特左旗| 濮阳县| 井研县| 甘泉县| 江源县| 霍山县| 赤壁市| 陕西省| 南川市| 扶绥县| 嘉善县| 平湖市| 陈巴尔虎旗| 德庆县| 和政县| 汝城县| 宁远县| 海林市|