找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
41#
發(fā)表于 2025-3-28 14:46:36 | 只看該作者
42#
發(fā)表于 2025-3-28 20:48:49 | 只看該作者
https://doi.org/10.1007/978-3-662-41370-8sitions represent many natural phenomena or engineering processes. We shall introduce few particular bifurcations, viz., saddle-node (fold), period-doubling (flip), period-bubbling, pitchfork, transcritical?bifurcations, and Neimark-Sacker codimension-2 bifurcation?in this chapter.
43#
發(fā)表于 2025-3-28 23:01:51 | 只看該作者
Stability Theory,quations rigorous mathematical definitions are often too restrictive in analyzing the stability of solutions.?We begin with the stability analysis of linear systems. The normal form analysis for stable, unstable and center manifolds, and the center manifold reduction are discussed.
44#
發(fā)表于 2025-3-29 03:05:55 | 只看該作者
45#
發(fā)表于 2025-3-29 10:36:51 | 只看該作者
Symmetry Analysis,ce of symmetry, particularly in analyzing nonlinear systems we devote this chapter on basic idea of group of transformations, Lie group of transformations,?Lie group of transformations, some theorems on Lie symmetry, its invariance,?Invariance principle and algorithm, and symmetry analysis of some physical?systems.
46#
發(fā)表于 2025-3-29 12:13:58 | 只看該作者
47#
發(fā)表于 2025-3-29 17:55:35 | 只看該作者
48#
發(fā)表于 2025-3-29 23:46:58 | 只看該作者
Continuous Dynamical Systems,eir trajectories cannot be represented by usual geometry.?In this chapter we discuss some important definitions, concept of flows, their properties, examples, and analysis of one-dimensional flows for an easy way to understand the nonlinear dynamical systems.
49#
發(fā)表于 2025-3-29 23:54:44 | 只看該作者
50#
發(fā)表于 2025-3-30 07:55:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砚山县| 榆社县| 昭平县| 崇义县| 太仓市| 广饶县| 仁怀市| 梁山县| 永昌县| 宁德市| 刚察县| 独山县| 噶尔县| 体育| 密山市| 福建省| 洱源县| 新宾| 司法| 天祝| 阿坝县| 郴州市| 城口县| 格尔木市| 东阳市| 中超| 惠安县| 体育| 太白县| 修水县| 永胜县| 漳平市| 陇川县| 右玉县| 宜川县| 上虞市| 广东省| 军事| 泊头市| 南乐县| 班玛县|