找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
31#
發(fā)表于 2025-3-27 00:43:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:33 | 只看該作者
33#
發(fā)表于 2025-3-27 06:33:47 | 只看該作者
https://doi.org/10.1007/978-3-642-91640-3Discrete systems are described by maps or?difference equations. The composition of map generates the dynamics or flow of a discrete system.?The fixed points and their characters, some important theorems, periodic cycles, attractors,?Schwarzian derivative and its properties with examples are discussed at length.
34#
發(fā)表于 2025-3-27 09:57:33 | 只看該作者
https://doi.org/10.1007/978-981-99-7695-9bifurcation theory; chaos theory; conjugacy; flows; fractals; Hamiltonian flows; Lie symmetry analysis; osc
35#
發(fā)表于 2025-3-27 17:40:56 | 只看該作者
978-981-99-7697-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
36#
發(fā)表于 2025-3-27 21:37:27 | 只看該作者
Chaos,. On the other hand, there are some universal numbers applicable for particular class of systems, for example, the Feigenbaum number, Golden mean, etc. The Lorenz system is a paradigm of deterministic dissipative chaotic systems. The universality is an important feature in chaotic dynamics.
37#
發(fā)表于 2025-3-27 23:27:51 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:06:36 | 只看該作者
40#
發(fā)表于 2025-3-28 11:35:14 | 只看該作者
https://doi.org/10.1007/978-3-642-90807-1ear system does not provide always?the actual solution behaviors of the original nonlinear system. Nonlinear systems have interesting solution features.?This chapter deals with oscillatory solutions in linear and nonlinear equations, their properties and some applications.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗平县| 都江堰市| 翁牛特旗| 石城县| 平果县| 类乌齐县| 邵东县| 望奎县| 那曲县| 天气| 沂南县| 天峻县| 江永县| 清河县| 凉城县| 临汾市| 栾城县| 驻马店市| 塔河县| 邯郸市| 花莲市| 汽车| 宜兰县| 手机| 博白县| 昌图县| 杭州市| 万全县| 尼玛县| 杭州市| 日土县| 黎川县| 依兰县| 灵寿县| 邵阳县| 壤塘县| 林口县| 固阳县| 平陆县| 五大连池市| 奈曼旗|