找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
31#
發(fā)表于 2025-3-27 00:43:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:33 | 只看該作者
33#
發(fā)表于 2025-3-27 06:33:47 | 只看該作者
https://doi.org/10.1007/978-3-642-91640-3Discrete systems are described by maps or?difference equations. The composition of map generates the dynamics or flow of a discrete system.?The fixed points and their characters, some important theorems, periodic cycles, attractors,?Schwarzian derivative and its properties with examples are discussed at length.
34#
發(fā)表于 2025-3-27 09:57:33 | 只看該作者
https://doi.org/10.1007/978-981-99-7695-9bifurcation theory; chaos theory; conjugacy; flows; fractals; Hamiltonian flows; Lie symmetry analysis; osc
35#
發(fā)表于 2025-3-27 17:40:56 | 只看該作者
978-981-99-7697-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
36#
發(fā)表于 2025-3-27 21:37:27 | 只看該作者
Chaos,. On the other hand, there are some universal numbers applicable for particular class of systems, for example, the Feigenbaum number, Golden mean, etc. The Lorenz system is a paradigm of deterministic dissipative chaotic systems. The universality is an important feature in chaotic dynamics.
37#
發(fā)表于 2025-3-27 23:27:51 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:06:36 | 只看該作者
40#
發(fā)表于 2025-3-28 11:35:14 | 只看該作者
https://doi.org/10.1007/978-3-642-90807-1ear system does not provide always?the actual solution behaviors of the original nonlinear system. Nonlinear systems have interesting solution features.?This chapter deals with oscillatory solutions in linear and nonlinear equations, their properties and some applications.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾源县| 鸡泽县| 吉木乃县| 霍林郭勒市| 华池县| 罗平县| 布拖县| 金阳县| 沁源县| 惠东县| 南安市| 汶川县| 唐河县| 阳城县| 丰宁| 项城市| 巴林左旗| 湖口县| 南岸区| 新干县| 景泰县| 马山县| 隆尧县| 韶山市| 乐亭县| 浏阳市| SHOW| 南汇区| 郴州市| 伊宁市| 项城市| 乐亭县| 济宁市| 林州市| 杂多县| 邹城市| 大渡口区| 上犹县| 北宁市| 鸡西市| 钟祥市|