找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Computational Origami; Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.

[復(fù)制鏈接]
樓主: 馬用
21#
發(fā)表于 2025-3-25 06:56:19 | 只看該作者
22#
發(fā)表于 2025-3-25 11:11:56 | 只看該作者
Simple Origami Geometry,fold rules and show, by examples, that it is as powerful as a straightedge and a compass. Furthermore, we show that the set of basic fold rules enables us to construct the shapes by folding by hand. The set of the basic fold rules is the main ingredient of more powerful Huzita-Justin’s fold rules that we discuss in Chapter ..
23#
發(fā)表于 2025-3-25 13:22:19 | 只看該作者
24#
發(fā)表于 2025-3-25 16:51:43 | 只看該作者
https://doi.org/10.1007/978-94-015-0602-1lds. The knot folds are the combination of superpositions of faces and insertions of faces into the slits between the face layers. The inserts enable the knot to be rigid. We use Huzita-Justin folds as the basis of the knot folds and extend them to allow for the knot folds.
25#
發(fā)表于 2025-3-25 23:22:58 | 只看該作者
Logical Analysis of Huzita-Justin Folds, folded. The obtained solutions, both in numeric and symbolic forms, make origami computationally tractable for further treatments, such as visualization and automated verification of the correctness of the origami construction.
26#
發(fā)表于 2025-3-26 02:28:53 | 只看該作者
27#
發(fā)表于 2025-3-26 04:33:17 | 只看該作者
0943-853X d graphical images to do so. In turn, it discusses the verification of origami using computer software and symbolic computation tools. The binary code for the origami software, called Eos and created by the author, is also provided..978-3-319-59189-6Series ISSN 0943-853X Series E-ISSN 2197-8409
28#
發(fā)表于 2025-3-26 08:50:12 | 只看該作者
29#
發(fā)表于 2025-3-26 14:45:12 | 只看該作者
30#
發(fā)表于 2025-3-26 17:18:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台中县| 利辛县| 尉犁县| 桂平市| 杭州市| 宜州市| 龙陵县| 密山市| 句容市| 竹山县| 连城县| 香河县| 盐城市| 宁国市| 夏河县| 蓬安县| 新化县| 辽宁省| 玉龙| 卢氏县| 开化县| 平和县| 远安县| 普格县| 延庆县| 庆元县| 彭山县| 岳池县| 化德县| 忻城县| 太保市| 孟连| 惠安县| 富顺县| 裕民县| 博乐市| 青铜峡市| 吐鲁番市| 普洱| 紫金县| 吐鲁番市|