找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Computational Origami; Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.

[復(fù)制鏈接]
樓主: 馬用
11#
發(fā)表于 2025-3-23 10:29:49 | 只看該作者
12#
發(fā)表于 2025-3-23 13:57:48 | 只看該作者
https://doi.org/10.1007/978-94-015-0602-1n adequate length, we can construct the simplest knot by three folds. We can make the shape of the knot a regular pentagon if we fasten the knot rigidly. We analyze the knot fold formally so that we can construct it rigorously and verify the correctness of the construction by algebraic methods. In p
13#
發(fā)表于 2025-3-23 22:06:44 | 只看該作者
,Vierzehntes und Fünfzehntes Jahrhundert,ewriting system (O, ?), where O is the set of abstract origamis and ? is a binary relation on O, that models a fold. An abstract origami is a structure (∏,?~?,??), where ∏ is a set of faces constituting an origami, and?~?and???are binary relations on ∏, each denoting adjacency and superposition rela
14#
發(fā)表于 2025-3-24 00:52:34 | 只看該作者
Book 2020. Focusing on how classical and modern geometrical problems are solved by means of origami, the book explains the methods not only with mathematical rigor but also by appealing to our scientific intuition, combining mathematical formulas and graphical images to do so. In turn, it discusses the verif
15#
發(fā)表于 2025-3-24 05:52:41 | 只看該作者
Verification of Origami Geometry, our verification method. One is a simple geometric shape to explain the principle of verification using algebraic methods. The other two are the proofs of a regular pentagon construction and the generalized Morley’s theorem. Through the three examples, we see the computationally streamlined geometric construction and verification.
16#
發(fā)表于 2025-3-24 09:51:23 | 只看該作者
17#
發(fā)表于 2025-3-24 11:16:50 | 只看該作者
18#
發(fā)表于 2025-3-24 18:09:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:05:03 | 只看該作者
,Vierzehntes und Fünfzehntes Jahrhundert,tions between the faces. This view is one step forward towards our more profound understanding of 3D and semi-3D origami folds, where we have overlapping faces. We take a classical origami crane as an example of our discussion and show how the theories discussed in this chapter formally analyze it.
20#
發(fā)表于 2025-3-25 02:26:36 | 只看該作者
0943-853X led explanations how classical and modern geometrical proble.In this book, origami is treated as a set of basic geometrical?objects?that are represented and manipulated symbolically and graphically by computers. Focusing on how classical and modern geometrical problems are solved by means of origami
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙居县| 新乡市| 光山县| 万年县| 潞城市| 蓬溪县| 农安县| 上犹县| 泰安市| 娱乐| 东海县| 禹城市| 浮梁县| 乌拉特中旗| 石景山区| 科尔| 油尖旺区| 普定县| 浏阳市| 盘锦市| 九台市| 南郑县| 阳谷县| 子洲县| 盖州市| 濮阳市| 新绛县| 仲巴县| 扶余县| 宜州市| 三都| 阿合奇县| 武义县| 象州县| 雅安市| 大关县| 贵定县| 晋宁县| 长寿区| 冕宁县| 大关县|