找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Basic Fourier Series; Sergei K. Suslov Book 2003 Springer Science+Business Media Dordrecht 2003 Complex analysis.Hyperg

[復(fù)制鏈接]
樓主: Hemochromatosis
21#
發(fā)表于 2025-3-25 03:51:28 | 只看該作者
22#
發(fā)表于 2025-3-25 08:58:29 | 只看該作者
Introduction of Basic Fourier Series,Our main objective in this chapter is to define basic Fourier series and to establish some elementary facts about them. In our presentation most of the material can be read independently from Chapters 3 and 4, we only assume that the reader is familiar with the basic exponential and basic trigonometric functions covered in Chapter 2.
23#
發(fā)表于 2025-3-25 15:10:10 | 只看該作者
24#
發(fā)表于 2025-3-25 17:10:08 | 只看該作者
Improved Asymptotics of Zeros,In Section 6.3 we derived the asymptotic formulas (6.3.14) and (6.3.15) for the zeros of the basic sine .. (.) and basic cosine .. ((.)) functions, respectively. In this chapter we shall find improved asymptotics for these zeros by a different method using the Lagrange inversion formula.
25#
發(fā)表于 2025-3-25 23:50:53 | 只看該作者
26#
發(fā)表于 2025-3-26 02:23:59 | 只看該作者
Basic Exponential and Trigonometric Functions,monic motion on a .-quadratic grid. Some of their elementary properties will be derived in order to form the basis for developing the theory of basic Fourier series and study some of their applications in the subsequent chapters.
27#
發(fā)表于 2025-3-26 06:19:54 | 只看該作者
Investigation of Basic Fourier Series,gonometric systems, and will establish several convenient tools, such as asymptotics of zeros, which are important for practical investigation of these series in the next chapters. Methods of summation and a few explicit examples of .-Fourier series will be also discussed among other things.
28#
發(fā)表于 2025-3-26 11:41:07 | 只看該作者
29#
發(fā)表于 2025-3-26 15:15:53 | 只看該作者
Sergei K. SuslovIncludes supplementary material:
30#
發(fā)表于 2025-3-26 17:58:50 | 只看該作者
Developments in Mathematicshttp://image.papertrans.cn/a/image/155145.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华宁县| 二连浩特市| 宁陕县| 平武县| 广河县| 泽州县| 泰安市| 巫溪县| 茶陵县| 平远县| 西平县| 迁安市| 深圳市| 固镇县| 富民县| 光山县| 文化| 鹤山市| 嘉禾县| 宁国市| 察雅县| 泊头市| 固阳县| 大埔县| 凌云县| 离岛区| 凤冈县| 大化| 兴化市| 武鸣县| 南城县| 山阳县| 吴川市| 高安市| 佛冈县| 宣汉县| 元谋县| 贵南县| 唐海县| 琼海市| 永平县|