找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Basic Fourier Series; Sergei K. Suslov Book 2003 Springer Science+Business Media Dordrecht 2003 Complex analysis.Hyperg

[復(fù)制鏈接]
查看: 25100|回復(fù): 48
樓主
發(fā)表于 2025-3-21 20:04:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to Basic Fourier Series
影響因子2023Sergei K. Suslov
視頻videohttp://file.papertrans.cn/156/155145/155145.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Developments in Mathematics
圖書封面Titlebook: An Introduction to Basic Fourier Series;  Sergei K. Suslov Book 2003 Springer Science+Business Media Dordrecht 2003 Complex analysis.Hyperg
影響因子It was with the publication of Norbert Wiener‘s book ‘‘The Fourier In- tegral and Certain of Its Applications" [165] in 1933 by Cambridge Univer- sity Press that the mathematical community came to realize that there is an alternative approach to the study of c1assical Fourier Analysis, namely, through the theory of c1assical orthogonal polynomials. Little would he know at that time that this little idea of his would help usher in a new and exiting branch of c1assical analysis called q-Fourier Analysis. Attempts at finding q-analogs of Fourier and other related transforms were made by other authors, but it took the mathematical insight and instincts of none other then Richard Askey, the grand master of Special Functions and Orthogonal Polynomials, to see the natural connection between orthogonal polynomials and a systematic theory of q-Fourier Analysis. The paper that he wrote in 1993 with N. M. Atakishiyev and S. K Suslov, entitled "An Analog of the Fourier Transform for a q-Harmonic Oscillator" [13], was probably the first significant publication in this area. The Poisson k~rnel for the contin- uous q-Hermite polynomials plays a role of the q-exponential function for the analog of
Pindex Book 2003
The information of publication is updating

書目名稱An Introduction to Basic Fourier Series影響因子(影響力)




書目名稱An Introduction to Basic Fourier Series影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Basic Fourier Series網(wǎng)絡(luò)公開度




書目名稱An Introduction to Basic Fourier Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Basic Fourier Series被引頻次




書目名稱An Introduction to Basic Fourier Series被引頻次學(xué)科排名




書目名稱An Introduction to Basic Fourier Series年度引用




書目名稱An Introduction to Basic Fourier Series年度引用學(xué)科排名




書目名稱An Introduction to Basic Fourier Series讀者反饋




書目名稱An Introduction to Basic Fourier Series讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:21 | 只看該作者
Investigation of Basic Fourier Series,gonometric systems, and will establish several convenient tools, such as asymptotics of zeros, which are important for practical investigation of these series in the next chapters. Methods of summation and a few explicit examples of .-Fourier series will be also discussed among other things.
板凳
發(fā)表于 2025-3-22 02:31:37 | 只看該作者
Some Expansions in Basic Fourier Series,ral way, to a new class of formulas never investigated before from the I an analytical and/or numerical point of view [.], [.]. In our presentation y most of the material can be read independently from Chapters 7 and 8, but we assume that the reader is familiar with the investigation of the basic Fo
地板
發(fā)表于 2025-3-22 08:09:47 | 只看該作者
Numerical Investigation of Basic Fourier Series,on of the zeros of basic trigonometric functions, study of their bounds and asymptotics, and numerical examples demonstrating convergence of the .-Fourier series. Most of this material appeared in our joint paper with Bill Gosper [.], who wrote the special Macsyma program “namesum” for numerical eva
5#
發(fā)表于 2025-3-22 12:06:19 | 只看該作者
6#
發(fā)表于 2025-3-22 13:48:11 | 只看該作者
https://doi.org/10.1007/978-1-4757-3731-8Complex analysis; Hypergeometric function; Mathematica; Volume; analytic function; approximation; approxim
7#
發(fā)表于 2025-3-22 17:47:39 | 只看該作者
8#
發(fā)表于 2025-3-22 22:41:38 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:50 | 只看該作者
,Pr?vention von Kindeswohlgef?hrdung,monic motion on a .-quadratic grid. Some of their elementary properties will be derived in order to form the basis for developing the theory of basic Fourier series and study some of their applications in the subsequent chapters.
10#
發(fā)表于 2025-3-23 08:19:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰县| 兰溪市| 营山县| 毕节市| 会泽县| 多伦县| 辛集市| 宣化县| 台江县| 鸡西市| 清水县| 祁连县| 上犹县| 静宁县| 南陵县| 普洱| 阜阳市| 江安县| 巢湖市| 苍溪县| 南靖县| 万州区| 山阴县| 焦作市| 峨山| 大城县| 孝义市| 丽水市| 茶陵县| 嘉义县| 监利县| 仁寿县| 华宁县| 庄浪县| 越西县| 汉中市| 武定县| 新兴县| 蓬安县| 沂水县| 永城市|