找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume III; Discrete Mathematics Antonio Caminha Muniz Neto Textbook 2018 Springer Internation

[復(fù)制鏈接]
樓主: 鏟除
61#
發(fā)表于 2025-4-1 02:23:19 | 只看該作者
62#
發(fā)表于 2025-4-1 07:54:33 | 只看該作者
More Counting Techniques,e number of elements of a finite union of finite sets. The presentation continues with the notion of . for, counting a certain number of configurations in two distinct ways, to infer some hidden result. Then, a brief discussion of equivalence relations and their role in counting problems follows. Am
63#
發(fā)表于 2025-4-1 10:52:00 | 只看該作者
64#
發(fā)表于 2025-4-1 14:42:43 | 只看該作者
65#
發(fā)表于 2025-4-1 21:31:43 | 只看該作者
Diophantine Equations,characterize all solutions. We also present to the reader the important ., which provides a frequently useful tool for showing that certain diophantine equations do not possess . solutions, in a way to be made precise. The aforementioned method is one of the major legacies of Pierre Simon de Fermat
66#
發(fā)表于 2025-4-1 22:43:04 | 只看該作者
Arithmetic Functions,ny arithmetic multiplicative functions we shall encounter here, two deserve all spotlights: the Euler function ., which will reveal itself to be an indispensable tool for basically all further theoretical developments, and the M?bius function ., which is essential to getting the celebrated . and its
67#
發(fā)表于 2025-4-2 06:51:00 | 只看該作者
The Relation of Congruence,e famous ., as well as its generalization, due to Euler. The pervasiveness of these two results in elementary Number Theory owes a great deal to the fact that they form the starting point for a systematic study of the behavior of the remainders of powers of a natural number . upon division by a give
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保靖县| 江阴市| 武隆县| 惠来县| 凤山县| 仁化县| 鲁山县| 建德市| 桓仁| 遵义县| 鹤峰县| 兴和县| 信阳市| 休宁县| 明光市| 专栏| 毕节市| 安陆市| 襄城县| 凤山市| 会理县| 武义县| 原平市| 晋宁县| 张家港市| 离岛区| 柘荣县| 清河县| 兴仁县| 龙井市| 宁强县| 新泰市| 阿巴嘎旗| 邛崃市| 天津市| 海盐县| 宝兴县| 信丰县| 夏河县| 砀山县| 绵竹市|