找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume III; Discrete Mathematics Antonio Caminha Muniz Neto Textbook 2018 Springer Internation

[復(fù)制鏈接]
樓主: 鏟除
11#
發(fā)表于 2025-3-23 12:24:27 | 只看該作者
12#
發(fā)表于 2025-3-23 13:55:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:32:21 | 只看該作者
Complex Numbers,d the flowering of complex function theory. In this respect, a major first crowning was the proof, by Gauss, of the famous ., which asserts that every polynomial function with complex coefficients has a complex root.
14#
發(fā)表于 2025-3-23 22:50:01 | 只看該作者
On the Factorisation of Polynomials,similar to the unique factorisation of integers. Our purpose in this chapter is to give precise answers to these questions, which shall encompass polynomials with coefficients in ., for some prime integer ..
15#
發(fā)表于 2025-3-24 03:00:57 | 只看該作者
https://doi.org/10.1007/978-3-662-42500-8loping the most elementary algebraic concepts and results on polynomials. To this end, along all that follows we shall write . to denote one of .,. or ., whenever a specific choice of one of these number sets is immaterial.
16#
發(fā)表于 2025-3-24 10:03:49 | 只看該作者
https://doi.org/10.1007/978-3-663-08404-4to solve Vandermonde’ linear systems with no Linear Algebra. In turn, the knowledge of the solutions of such linear systems will allow us to study, in Sect. ., an important particular class of linear recurrence relations, thus partially extending the methods of Section 3.2 of [8].
17#
發(fā)表于 2025-3-24 11:03:34 | 只看該作者
Polynomials,loping the most elementary algebraic concepts and results on polynomials. To this end, along all that follows we shall write . to denote one of .,. or ., whenever a specific choice of one of these number sets is immaterial.
18#
發(fā)表于 2025-3-24 14:54:39 | 只看該作者
Interpolation of Polynomials,to solve Vandermonde’ linear systems with no Linear Algebra. In turn, the knowledge of the solutions of such linear systems will allow us to study, in Sect. ., an important particular class of linear recurrence relations, thus partially extending the methods of Section 3.2 of [8].
19#
發(fā)表于 2025-3-24 19:48:30 | 只看該作者
Antonio Caminha Muniz NetoCombines an in-depth overview of the theory with problems presented at several Mathematical Olympiads around the world.Offers a comprehensive course on problem-solving techniques.Presents a coherent d
20#
發(fā)表于 2025-3-25 01:44:40 | 只看該作者
Problem Books in Mathematicshttp://image.papertrans.cn/a/image/155002.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰兴市| 株洲县| 彰化县| 河间市| 绥宁县| 上饶县| 郎溪县| 榆社县| 商洛市| 永胜县| 明光市| 威信县| 富裕县| 冕宁县| 田林县| 青河县| 宝山区| 垫江县| 平顶山市| 扎鲁特旗| 兴宁市| 襄垣县| 松溪县| 阳朔县| 防城港市| 保亭| 门头沟区| 郯城县| 拉萨市| 巴楚县| 靖宇县| 崇明县| 巴彦县| 招远市| 宜章县| 竹山县| 新乡市| 漯河市| 宁波市| 万全县| 陆川县|