找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume II; Euclidean Geometry Antonio Caminha Muniz Neto Textbook 2018 Springer International

[復(fù)制鏈接]
樓主: 領(lǐng)口
41#
發(fā)表于 2025-3-28 16:21:13 | 只看該作者
42#
發(fā)表于 2025-3-28 20:06:33 | 只看該作者
43#
發(fā)表于 2025-3-29 02:48:14 | 只看該作者
The Cartesian Method, the exposition has been built in the previous chapters—, and to the trigonometric method, which will be presented in the next chapter. As a result of such an approach, we will be able to develop certain aspects of the theory which have been postponed until here, the most notable of them being a fir
44#
發(fā)表于 2025-3-29 04:51:05 | 只看該作者
Trigonometry and Geometry,aim at developing a set of computational tools that allow us to successfully approach metric problems for which the methods developed so far are useless. We shall refer to the systematic use of such tools in geometric problems as the ..
45#
發(fā)表于 2025-3-29 09:59:46 | 只看該作者
Vectors in the Plane,ry. In this sense, we shall try to emphasize the use of vectors as being, at the same time, alternative and complementary to the synthetic and cartesian methods. It is within this spirit that we shall use vectors to revisit several previously obtained results; in particular, we call the reader’s att
46#
發(fā)表于 2025-3-29 15:03:09 | 只看該作者
47#
發(fā)表于 2025-3-29 18:34:53 | 只看該作者
48#
發(fā)表于 2025-3-29 20:21:39 | 只看該作者
49#
發(fā)表于 2025-3-30 00:51:00 | 只看該作者
Proportionality and Similarity,er. We also present a series of classical results, among which we highlight the study of the Apollonius circle and the solution of the Apollonius tangency problem, the collinearity and concurrence theorems of Ceva and Menelao, and some of the many theorems of Euler on the geometry of the triangle.
50#
發(fā)表于 2025-3-30 07:00:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东方市| 吉安市| 涪陵区| 利辛县| 新巴尔虎右旗| 东乡县| 昌黎县| 老河口市| 绍兴县| 三门县| 迭部县| 班玛县| 修武县| 基隆市| 宁南县| 黎川县| 隆林| 芮城县| 隆安县| 方正县| 迁西县| 拜泉县| 镇康县| 崇义县| 岳池县| 弋阳县| 左权县| 天水市| 沧州市| 临海市| 和静县| 象州县| 北流市| 新干县| 巢湖市| 许昌市| 庆城县| 岳西县| 那曲县| 宁城县| 镇安县|