找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume II; Euclidean Geometry Antonio Caminha Muniz Neto Textbook 2018 Springer International

[復(fù)制鏈接]
樓主: 領(lǐng)口
21#
發(fā)表于 2025-3-25 06:14:35 | 只看該作者
22#
發(fā)表于 2025-3-25 07:35:46 | 只看該作者
23#
發(fā)表于 2025-3-25 11:48:39 | 只看該作者
Lohnpolitik in einem Ver?nderten Umfeldaim at developing a set of computational tools that allow us to successfully approach metric problems for which the methods developed so far are useless. We shall refer to the systematic use of such tools in geometric problems as the ..
24#
發(fā)表于 2025-3-25 17:30:54 | 只看該作者
https://doi.org/10.1007/978-3-662-28938-9ry. In this sense, we shall try to emphasize the use of vectors as being, at the same time, alternative and complementary to the synthetic and cartesian methods. It is within this spirit that we shall use vectors to revisit several previously obtained results; in particular, we call the reader’s att
25#
發(fā)表于 2025-3-25 23:52:44 | 只看該作者
26#
發(fā)表于 2025-3-26 00:37:20 | 只看該作者
27#
發(fā)表于 2025-3-26 08:03:26 | 只看該作者
Zur psychischen Struktur und Psychodynamikhe important concept of ., which encompasses prisms and pyramids, and apply Girard’s theorem to prove the celebrated ., which asserts that the . of every convex polyhedron is equal to 2. The chapter finishes with using Euler’s theorem to obtain the classification of all . polyhedra, and showing that
28#
發(fā)表于 2025-3-26 12:04:51 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:20 | 只看該作者
30#
發(fā)表于 2025-3-26 17:51:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 02:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴忠市| 南充市| 连平县| 崇文区| 乐亭县| 宁乡县| 澜沧| 上栗县| 紫阳县| 哈密市| 宜黄县| 南平市| 泉州市| 城口县| 正镶白旗| 翁牛特旗| 衡水市| 加查县| 开远市| 凤凰县| 新乡县| 遂川县| 临城县| 嵩明县| 漠河县| 岐山县| 巴里| 花垣县| 耿马| 建昌县| 梅州市| 屯留县| 柳河县| 章丘市| 墨脱县| 临夏县| 潞城市| 海兴县| 潞城市| 门头沟区| 来凤县|