找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence; Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm

[復(fù)制鏈接]
樓主: 并排一起
41#
發(fā)表于 2025-3-28 16:07:39 | 只看該作者
42#
發(fā)表于 2025-3-28 21:54:50 | 只看該作者
2195-9994 asspecialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology..Distinctively combines results and methods of the theory of differential equations with thorough inv978-3-030-20572-0Series ISSN 2195-9994 Series E-ISSN 2196-0003
43#
發(fā)表于 2025-3-29 00:34:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:24:17 | 只看該作者
45#
發(fā)表于 2025-3-29 09:31:38 | 只看該作者
Developments in Applied Spectroscopyond section we are concentrated on the Bochner definition of discontinuous almost periodic function. This was done in our papers for the first time. The Bochner’s definition is convenient for topological dynamics. Initially, the dynamics was applied either to autonomous equations or to non-autonomou
46#
發(fā)表于 2025-3-29 11:58:07 | 只看該作者
47#
發(fā)表于 2025-3-29 17:39:01 | 只看該作者
Book 2020ations where dynamics are observable and applied, the book is ideal for engineers as well asspecialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology..Distinctively combines results and methods of the theory of differential equations with thorough inv
48#
發(fā)表于 2025-3-29 21:03:49 | 只看該作者
Introduction,r development of many discontinuous dynamics is emphasized. The second part provides short and sufficiently complete description of main results on deterministic chaos. Then, the mechanism of replication of chaos is introduced with stressing that our proposals are a powerful instrument for shaping n
49#
發(fā)表于 2025-3-30 02:27:11 | 只看該作者
50#
發(fā)表于 2025-3-30 07:17:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 13:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘乡市| 湖北省| 贵德县| 黄山市| 绵竹市| 宿松县| 昌都县| 虎林市| 齐河县| 新干县| 乳山市| 南部县| 浦北县| 招远市| 徐闻县| 平和县| 乾安县| 七台河市| 海盐县| 涟水县| 微博| 大邑县| 铜梁县| 盘锦市| 九寨沟县| 苏州市| 蒲江县| 景东| 平舆县| 哈巴河县| 隆回县| 红河县| 喀喇沁旗| 稻城县| 墨脱县| 石林| 安泽县| 灵川县| 永兴县| 新宁县| 苍梧县|