找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence; Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm

[復(fù)制鏈接]
樓主: 并排一起
41#
發(fā)表于 2025-3-28 16:07:39 | 只看該作者
42#
發(fā)表于 2025-3-28 21:54:50 | 只看該作者
2195-9994 asspecialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology..Distinctively combines results and methods of the theory of differential equations with thorough inv978-3-030-20572-0Series ISSN 2195-9994 Series E-ISSN 2196-0003
43#
發(fā)表于 2025-3-29 00:34:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:24:17 | 只看該作者
45#
發(fā)表于 2025-3-29 09:31:38 | 只看該作者
Developments in Applied Spectroscopyond section we are concentrated on the Bochner definition of discontinuous almost periodic function. This was done in our papers for the first time. The Bochner’s definition is convenient for topological dynamics. Initially, the dynamics was applied either to autonomous equations or to non-autonomou
46#
發(fā)表于 2025-3-29 11:58:07 | 只看該作者
47#
發(fā)表于 2025-3-29 17:39:01 | 只看該作者
Book 2020ations where dynamics are observable and applied, the book is ideal for engineers as well asspecialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology..Distinctively combines results and methods of the theory of differential equations with thorough inv
48#
發(fā)表于 2025-3-29 21:03:49 | 只看該作者
Introduction,r development of many discontinuous dynamics is emphasized. The second part provides short and sufficiently complete description of main results on deterministic chaos. Then, the mechanism of replication of chaos is introduced with stressing that our proposals are a powerful instrument for shaping n
49#
發(fā)表于 2025-3-30 02:27:11 | 只看該作者
50#
發(fā)表于 2025-3-30 07:17:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 13:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北票市| 定西市| 津市市| 洪江市| 南靖县| 莱阳市| 合水县| 长顺县| 青海省| 濉溪县| 临城县| 刚察县| 克山县| 奉节县| 睢宁县| 运城市| 巍山| 荣成市| 杨浦区| 波密县| 灵璧县| 龙井市| 清河县| 姜堰市| 卓资县| 乌兰县| 莱阳市| 江达县| 皮山县| 那曲县| 吴江市| 华亭县| 达拉特旗| 弥勒县| 勐海县| 左贡县| 宁安市| 乃东县| 资阳市| 呼图壁县| 南澳县|