找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence; Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm

[復(fù)制鏈接]
樓主: 并排一起
31#
發(fā)表于 2025-3-26 23:00:31 | 只看該作者
Exponentially Dichotomous Linear Systems of Differential Equations with Piecewise Constant Argumenteen made in such a way that further construction of the theory of differential equations will follow the structure of that for ordinary differential equations. All the results are illustrated with examples.
32#
發(fā)表于 2025-3-27 03:58:22 | 只看該作者
33#
發(fā)表于 2025-3-27 06:35:02 | 只看該作者
34#
發(fā)表于 2025-3-27 12:13:05 | 只看該作者
Developments in Applied Spectroscopyrke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted.
35#
發(fā)表于 2025-3-27 16:01:31 | 只看該作者
Homoclinic Chaos and Almost Periodicity,rke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted.
36#
發(fā)表于 2025-3-27 19:12:52 | 只看該作者
37#
發(fā)表于 2025-3-27 23:31:07 | 只看該作者
Discontinuous Almost Periodic Solutions,r systems with impulses, such that they are sufficient to admit discontinuous almost periodic solutions, which are asymptotically stable. Interesting specific cases are under consideration, which can be useful for next developments. The most informative historical aspects of the theory of discontinuous almost periodic solutions are provided.
38#
發(fā)表于 2025-3-28 04:06:00 | 只看該作者
Asymptotic Equivalence of Hybrid Systems,tial equations. It is easy to see that the results are generalizations of Chap. 12 such that if one removes the impulsive parts in equations of this chapter then the results of the last chapter will be obtained.
39#
發(fā)表于 2025-3-28 08:25:43 | 只看該作者
40#
發(fā)表于 2025-3-28 13:19:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 13:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉化市| 武义县| 花莲县| 隆安县| 乡宁县| 绥滨县| 林口县| 高碑店市| 克什克腾旗| 康定县| 宁强县| 双鸭山市| 鄂托克前旗| 乌鲁木齐县| 仙游县| 保德县| 都匀市| 山西省| 连江县| 大冶市| 天峨县| 波密县| 集安市| 团风县| 泌阳县| 大英县| 连州市| 楚雄市| 伊宁市| 襄汾县| 突泉县| 兰溪市| 望城县| 灌阳县| 阳东县| 娄底市| 乐陵市| 吉安县| 陆河县| 洪湖市| 夏邑县|