找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms, Fractals, and Dynamics; Y. Takahashi Book 1995 Plenum Press, New York 1995 Homeomorphism.Maxima.Variance.algorithms

[復(fù)制鏈接]
樓主: VEER
51#
發(fā)表于 2025-3-30 09:35:42 | 只看該作者
52#
發(fā)表于 2025-3-30 14:26:05 | 只看該作者
,Koksma’s Inequality and Group Extensions of Kronecker Transformations,We consider methods of establishing ergodicity of group extensions, proving that a class of cylinder flows are ergodic, coalescent and non-squashable. A new Koksma-type inequality is also obtained.
53#
發(fā)表于 2025-3-30 19:47:16 | 只看該作者
Quadratic Maps with Maximal Oscillation,Let (..)o≤t≤1 denote the family of quadratic maps .. = 2.(1- ..) - 1 on [-1, 1]. An important aspect of the asymptotics of interates of a map .. is the behaviour of mass distributions along individual orbits.
54#
發(fā)表于 2025-3-30 22:58:01 | 只看該作者
55#
發(fā)表于 2025-3-31 02:37:34 | 只看該作者
The Dynamics of Self-Similar Sets on ,, and Complex Dynamics,We begin with the following theorem (see [3] and [4]).
56#
發(fā)表于 2025-3-31 05:49:12 | 只看該作者
57#
發(fā)表于 2025-3-31 12:50:05 | 只看該作者
,A Short Proof of Even α-Equivalence,α-equivalence of two discrete dynamical systems is defined via continuous actions and vice versa. We present a short proof of the equivalence, bypassing the whole machinery of the restricted orbit equivalence.
58#
發(fā)表于 2025-3-31 14:50:52 | 只看該作者
59#
發(fā)表于 2025-3-31 18:24:37 | 只看該作者
http://image.papertrans.cn/a/image/153306.jpg
60#
發(fā)表于 2025-3-31 23:12:40 | 只看該作者
Zweites Kapitel: Das Ph?nomen ?Enhancement“ 80 years ago Borel showed that almost all real numbers are normal to all bases. Some 40 years ago Steinhaus asked whether 2-normality coincides with 3-normality and Cassels answered the question in the negative (see [3]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米泉市| 建阳市| 襄汾县| 灵宝市| 古浪县| 顺昌县| 田东县| 鹤峰县| 中牟县| 鄂伦春自治旗| 阳春市| 巩义市| 尖扎县| 民乐县| 林口县| 砀山县| 岳普湖县| 理塘县| 桦甸市| 兴海县| 上饶县| 永福县| 仙居县| 萨嘎县| 稷山县| 临泉县| 通渭县| 洛隆县| 海伦市| 福海县| 张家口市| 永胜县| 太仆寺旗| 贡嘎县| 蚌埠市| 天全县| 临漳县| 建始县| 汝州市| 鹤庆县| 北川|