找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms, Fractals, and Dynamics; Y. Takahashi Book 1995 Plenum Press, New York 1995 Homeomorphism.Maxima.Variance.algorithms

[復制鏈接]
樓主: VEER
31#
發(fā)表于 2025-3-26 22:56:29 | 只看該作者
32#
發(fā)表于 2025-3-27 04:52:38 | 只看該作者
https://doi.org/10.1007/978-3-642-96014-7ch as recurrent set, nonwandering set and chain recurrent set. In many cases, the restriction of the map to such an invariant set possesses expansivity (or sensitive dependence on initial conditions, see Devaney [D] for the definition). For instance, from a result of Shub [Sh] we see that a diffeomo
33#
發(fā)表于 2025-3-27 08:30:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:21:39 | 只看該作者
From there to here or here to hereype which commutes only with its powers and has only trivial invariant .-algebras. Here we show that such examples can be obtained more directly using coding ideas. In fact, coding techniques yield results which do not seem obtainable via joinings, e.g. a complete classification of the factor algebr
35#
發(fā)表于 2025-3-27 16:03:33 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:26 | 只看該作者
https://doi.org/10.1007/978-3-658-08411-0et which has local translation and reflection invariance is a constant time change of the Brownian motion. On the other hand, Kumagai [Kum] introduced a class of Feller diffusions which is invariant under the operation of local rotation. These diffusions are called .-stream diffusions on the Sierpin
37#
發(fā)表于 2025-3-27 23:07:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:45:20 | 只看該作者
Rousseaus Gesellschaftsvertrag,simple continued fractions case and a generalized case). Relations between continued fractions and the geodesic flows on the modular surface are well-known. For example, Adler and Flatto [1] showed that the continued fraction transformation is obtained as a cross-section map of the geodesic flow. An
39#
發(fā)表于 2025-3-28 06:51:10 | 只看該作者
40#
發(fā)表于 2025-3-28 12:43:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
龙门县| 濮阳县| 吉首市| 株洲县| 潼南县| 珠海市| 安溪县| 翁源县| 琼结县| 溆浦县| 象山县| 呼图壁县| 台中市| 新巴尔虎右旗| 天全县| 昌都县| 岳普湖县| 将乐县| 张家界市| 阳东县| 隆安县| 鹤山市| 营口市| 德化县| 泸州市| 保亭| 永济市| 抚顺市| 南木林县| 临漳县| 东港市| 炉霍县| 西畴县| 周至县| 赞皇县| 兴业县| 凤庆县| 方山县| 乳山市| 山丹县| 沙田区|