找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco?ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 調(diào)停
31#
發(fā)表于 2025-3-26 23:39:36 | 只看該作者
32#
發(fā)表于 2025-3-27 03:48:16 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:03 | 只看該作者
34#
發(fā)表于 2025-3-27 10:47:52 | 只看該作者
35#
發(fā)表于 2025-3-27 14:58:41 | 只看該作者
36#
發(fā)表于 2025-3-27 19:08:19 | 只看該作者
37#
發(fā)表于 2025-3-27 23:50:13 | 只看該作者
Eine Ikonologie des Schulanfangs,ether two points belong to the same connected component. Done in a parametric way the roadmap algorithm also gives a description of the semi-algebraically connected components of an algebraic set. The complexities of the algorithms given in this chapter are much better than the one provided by cylin
38#
發(fā)表于 2025-3-28 04:00:35 | 只看該作者
https://doi.org/10.1007/978-3-531-91698-9s provided by cylindrical decomposition in Chapter 12 for the problem of deciding connectivity properties of semi-algebraic sets (single exponential in the number of variables rather than doubly exponential).
39#
發(fā)表于 2025-3-28 07:53:40 | 只看該作者
Algebraically Closed Fields,remainder sequences and, for the case where the coefficients have parameters, the tree of possible pseudo-remainder sequences and the set of possible greatest common divisors. Several important applications of logical nature of the projection theorem are given.
40#
發(fā)表于 2025-3-28 12:35:12 | 只看該作者
Real Closed Fields,ets and prove that the projection of a semi-algebraic set is semi-algebraic. This is done using a parametric version of real root counting techniques described in the second section. The fourth section is devoted to several important applications of the projection theorem, of logical and geometric n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库车县| 镇沅| 思南县| 会理县| 阳泉市| 涿鹿县| 横峰县| 斗六市| 师宗县| 分宜县| 南陵县| 溧阳市| 崇礼县| 弥渡县| 惠州市| 横峰县| 新河县| 札达县| 合山市| 平顶山市| 平湖市| 玉屏| 海兴县| 张家界市| 房产| 信丰县| 临沧市| 淮北市| 德昌县| 西城区| 佳木斯市| 灵宝市| 萨迦县| 呼玛县| 东至县| 南平市| 泰安市| 惠东县| 尤溪县| 定南县| 迁西县|