找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco?ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 調(diào)停
11#
發(fā)表于 2025-3-23 09:44:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:50 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:49:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:07:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:57 | 只看該作者
Computing Roadmaps and Connected Components of Semi-algebraic Sets,s provided by cylindrical decomposition in Chapter 12 for the problem of deciding connectivity properties of semi-algebraic sets (single exponential in the number of variables rather than doubly exponential).
17#
發(fā)表于 2025-3-24 14:19:01 | 只看該作者
Therapieoptionen bei der Schmerzbehandlung,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
18#
發(fā)表于 2025-3-24 15:40:49 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:47 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
Introduction,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩留县| 林西县| 来凤县| 阳新县| 苍溪县| 阿拉善左旗| 阿拉善盟| 无棣县| 兴仁县| 盈江县| 长寿区| 鄱阳县| 沈阳市| 新巴尔虎右旗| 深州市| 博湖县| 上林县| 四会市| 鞍山市| 连江县| 清涧县| 郑州市| 威宁| 中牟县| 榆中县| 安图县| 武陟县| 乐至县| 珲春市| 景洪市| 金门县| 赤水市| 乌兰浩特市| 白水县| 武夷山市| 斗六市| 阜宁县| 双牌县| 左权县| 平原县| 开江县|