找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 13th International S Prosenjit Bose,Pat Morin Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 200

[復制鏈接]
樓主: BULB
51#
發(fā)表于 2025-3-30 09:32:29 | 只看該作者
52#
發(fā)表于 2025-3-30 15:23:27 | 只看該作者
53#
發(fā)表于 2025-3-30 19:59:18 | 只看該作者
Ernst-Ulrich Huster,Johannes D. Schüttesequence where the key values are assigned arbitrarily to unordered data as fast as any offline binary search tree algorithm, within a multiplicative constant. Asymptotically tight upper and lower bounds are presented for key-independent optimality. Splay trees are shown to be key-independently optimal.
54#
發(fā)表于 2025-3-31 00:19:25 | 只看該作者
55#
發(fā)表于 2025-3-31 04:01:12 | 只看該作者
56#
發(fā)表于 2025-3-31 08:00:26 | 只看該作者
Scham, K?rper, Geheimnis und Ged?chtnisl words w.,..., ..) is decidable, settling an open problem in [.,.]. The proof is a rather involved reduction to the solution of a special class of Diophantine systems of degree 2 via a class of programs called two-phase programs. The result has applications to verification of infinite state systems.
57#
發(fā)表于 2025-3-31 12:44:55 | 只看該作者
58#
發(fā)表于 2025-3-31 15:49:34 | 只看該作者
On the Comparison-Addition Complexity of All-Pairs Shortest Pathsn approaches based on Dijkstra’s algorithm, and for graphs with .(.) edges our algorithm is within a tiny .(log .) factor of optimal. The algorithm can be implemented to run in polynomial time (though it is not a pleasing polynomial). We leave open the problem of providing an efficient implementation.
59#
發(fā)表于 2025-3-31 19:13:20 | 只看該作者
The Probability of a Rendezvous Is Minimal in Complete Graphslity for a rendezvous to occur in . is at least as large as the probability of a rendezvous if the same experiment is carried out in the complete graph on the same number of nodes. In this paper we show that this is the case.
60#
發(fā)表于 2025-3-31 21:45:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
文成县| 筠连县| 贵港市| 长春市| 宝丰县| 阜城县| 泸水县| 丰宁| 定南县| 涪陵区| 阜新市| 瑞丽市| 富蕴县| 旬邑县| 吉隆县| 鞍山市| 甘孜| 楚雄市| 新宁县| 宿迁市| 藁城市| 太白县| 桂东县| 云和县| 海原县| 石城县| 庆城县| 松江区| 镇巴县| 疏附县| 邓州市| 苗栗市| 卓资县| 南川市| 贡山| 永年县| 吉安县| 濉溪县| 天门市| 资源县| 贵港市|