找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 13th International S Prosenjit Bose,Pat Morin Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 200

[復(fù)制鏈接]
樓主: BULB
21#
發(fā)表于 2025-3-25 05:44:22 | 只看該作者
22#
發(fā)表于 2025-3-25 11:35:04 | 只看該作者
Scham, K?rper, Geheimnis und Ged?chtnistes between nondecreasing and nonincreasing modes a fixed number of times) operating on bounded languages (i.e., subsets of ... ...... for some nonnull words w.,..., ..) is decidable, settling an open problem in [.,.]. The proof is a rather involved reduction to the solution of a special class of Di
23#
發(fā)表于 2025-3-25 14:45:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:15 | 只看該作者
Minas Dimitriou,Susanne Ring-Dimitrioue graphs with each vertex and edge a number in [0,1] associated. These graphs model networks in which sites and links can fail, with a given probability, independently of whether other sites or links fail or not. The number in [0,1] associated to each element is the probability that this element doe
26#
發(fā)表于 2025-3-26 03:37:05 | 只看該作者
27#
發(fā)表于 2025-3-26 07:29:52 | 只看該作者
28#
發(fā)表于 2025-3-26 09:19:19 | 只看該作者
Der Künstler im internationalen Steuerrecht that the number of bins that receive items of total size at least 1 is maximized. This is a dual problem to the classical bin packing problem. In this paper we present the first asymptotic fully polynomial-time approximation scheme (AFPTAS) for the bin covering problem.
29#
發(fā)表于 2025-3-26 16:08:51 | 只看該作者
30#
發(fā)表于 2025-3-26 20:16:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淄博市| 通城县| 石泉县| 民乐县| 哈尔滨市| 达日县| 郎溪县| 黄冈市| 舟曲县| 都安| 大安市| 安陆市| 正安县| 金川县| 思南县| 河间市| 苏州市| 荆门市| 东乡县| 晋江市| 都江堰市| 高清| 府谷县| 焉耆| 永安市| 静安区| 阿图什市| 萍乡市| 武山县| 昌邑市| 松桃| 屏南县| 盘锦市| 璧山县| 河西区| 洪泽县| 丰县| 义乌市| 六安市| 庆云县| 潜江市|