找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Learning Theory; 17th International C José L. Balcázar,Philip M. Long,Frank Stephan Conference proceedings 2006 Springer-Verlag

[復(fù)制鏈接]
樓主: Bush
11#
發(fā)表于 2025-3-23 12:52:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:25 | 只看該作者
The Complexity of Learning SUBSEQ (,)following inductive inference problem: given .(.), .(0), .(1), .(00), ... learn, in the limit, a DFA for SUBSEQ(.). We consider this model of learning and the variants of it that are usually studied in inductive inference: anomalies, mindchanges, and teams.
13#
發(fā)表于 2025-3-23 20:43:05 | 只看該作者
Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Datative data with mind change bound between .. and .. We give a very tight bound on the mind change complexity based on the length of the constant segments and the size of the alphabet of the pattern languages. This is, to the authors’ knowledge, the first time a natural class of languages has been sho
14#
發(fā)表于 2025-3-24 01:44:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:23:17 | 只看該作者
Iterative Learning from Positive Data and Negative Counterexamplesture with a teacher (oracle) if it is a subset of the target language (and if it is not, then it receives a negative counterexample), and uses only limited long-term memory (incorporated in conjectures). Three variants of this model are compared: when a learner receives least negative counterexample
16#
發(fā)表于 2025-3-24 10:04:08 | 只看該作者
17#
發(fā)表于 2025-3-24 11:56:45 | 只看該作者
Risk-Sensitive Online Learninghe best trade-off between rewards and .. Motivated by finance applications, we consider two common measures balancing returns and risk: the . [9] and the . criterion of Markowitz [8]. We first provide negative results establishing the impossibility of no-regret algorithms under these measures, thus
18#
發(fā)表于 2025-3-24 17:55:17 | 只看該作者
Leading Strategies in Competitive On-Line Predictiony prediction strategies admits a “l(fā)eading prediction strategy”, which not only asymptotically performs at least as well as any continuous limited-memory strategy but also satisfies the property that the excess loss of any continuous limited-memory strategy is determined by how closely it imitates th
19#
發(fā)表于 2025-3-24 22:32:06 | 只看該作者
Solving Semi-infinite Linear Programs Using Boosting-Like Methodsg. .=?. In the finite case the constraints can be described by a matrix with . rows and . columns that can be used to directly solve the LP. In semi-infinite linear programs (SILPs) the constraints are often given in a functional form depending on . or implicitly defined, for instance by the outcome of another algorithm.
20#
發(fā)表于 2025-3-25 00:51:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃北| 卢湾区| 刚察县| 招远市| 平远县| 石首市| 钦州市| 宁明县| 潜江市| 利津县| 库伦旗| 锡林郭勒盟| 沭阳县| 元谋县| 宁陕县| 曲周县| 嵊泗县| 墨脱县| 太白县| 墨玉县| 凭祥市| 喀喇沁旗| 化德县| 冷水江市| 曲阳县| 米易县| 乳源| 高陵县| 荣昌县| 北流市| 吴忠市| 青川县| 三都| 疏附县| 响水县| 眉山市| 昭通市| 城市| 横峰县| 丽水市| 靖西县|