找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Game Theory; 15th International S Panagiotis Kanellopoulos,Maria Kyropoulou,Alexandr Conference proceedings 2022 The Editor(s)

[復(fù)制鏈接]
查看: 36507|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:02:22 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algorithmic Game Theory
期刊簡稱15th International S
影響因子2023Panagiotis Kanellopoulos,Maria Kyropoulou,Alexandr
視頻videohttp://file.papertrans.cn/153/152947/152947.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithmic Game Theory; 15th International S Panagiotis Kanellopoulos,Maria Kyropoulou,Alexandr Conference proceedings 2022 The Editor(s)
影響因子This book constitutes the proceedings of the?15th International Symposium on?Algorithmic Game Theory, SAGT 2022, which took place in Colchester, UK, in September 2022.?The 31 full papers included in this book were carefully reviewed and selected from 83 submissions. They were organized in topical sections as follows: Auctions, markets and mechanism design; computational aspects in games; congestion and network creation games; data sharing and learning; social choice and stable matchings..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Algorithmic Game Theory影響因子(影響力)




書目名稱Algorithmic Game Theory影響因子(影響力)學(xué)科排名




書目名稱Algorithmic Game Theory網(wǎng)絡(luò)公開度




書目名稱Algorithmic Game Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algorithmic Game Theory被引頻次




書目名稱Algorithmic Game Theory被引頻次學(xué)科排名




書目名稱Algorithmic Game Theory年度引用




書目名稱Algorithmic Game Theory年度引用學(xué)科排名




書目名稱Algorithmic Game Theory讀者反饋




書目名稱Algorithmic Game Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:06 | 只看該作者
An Improved Bound for?the?Tree Conjecture in?Network Creation Games, and the objective of each vertex is to minimize the sum of the costs of the edges it purchases plus the sum of the distances to every other vertex in the resultant network. A long-standing conjecture states that if . then every Nash equilibrium in the game is a spanning tree. We prove the conjecture holds for any ..
板凳
發(fā)表于 2025-3-22 02:51:33 | 只看該作者
Conference proceedings 2022n September 2022.?The 31 full papers included in this book were carefully reviewed and selected from 83 submissions. They were organized in topical sections as follows: Auctions, markets and mechanism design; computational aspects in games; congestion and network creation games; data sharing and learning; social choice and stable matchings..
地板
發(fā)表于 2025-3-22 04:57:11 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:52 | 只看該作者
https://doi.org/10.1007/978-3-8349-9493-6e a decline in their overall profit compared to their total pre-merger profit. This phenomenon is more striking in small oligopolistic markets, where mergers increase market concentration and may hence trigger a substantial increase in prices. In this paper, we investigate the severity of the merger
6#
發(fā)表于 2025-3-22 14:58:04 | 只看該作者
https://doi.org/10.1007/978-3-86226-330-1l by encoding other-regarding preferences of the players into the utility functions. By doing so we leave the original domain where VCG mechanisms can be applied directly..We derive a characterization of the class of truthful mechanisms under the new model, crucially exploiting the specific form of
7#
發(fā)表于 2025-3-22 18:16:38 | 只看該作者
Rechtsprechende Abteilung im Patentamt,d more fair than the optimal auction. Indeed, it anonymously selects a provisional winner by a symmetric ascending-price process, and only then uses a personalized posted price. A . auction extracts at least 1/2 of the optimal revenue, even under a correlated value distribution. This bound is tight,
8#
發(fā)表于 2025-3-23 00:51:34 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:56:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察隅县| 巨野县| 寻甸| 井研县| 巴彦淖尔市| 安龙县| 巴青县| 响水县| 玉田县| 安平县| 临猗县| 瓦房店市| 普陀区| 东港市| 墨竹工卡县| 禄丰县| 高平市| 墨江| 青神县| 成都市| 普宁市| 安陆市| 正阳县| 固阳县| 德格县| 德化县| 灵台县| 天门市| 高碑店市| 临沭县| 德钦县| 铁岭市| 卫辉市| 定襄县| 定州市| 勃利县| 蒙城县| 宁德市| 寻乌县| 灌云县| 洪洞县|