找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Foundations of Robotics V; Jean-Daniel Boissonnat,Joel Burdick,Seth Hutchinso Book 2004 Springer-Verlag Berlin Heidelberg 2004

[復(fù)制鏈接]
樓主: 使無罪
41#
發(fā)表于 2025-3-28 16:35:09 | 只看該作者
42#
發(fā)表于 2025-3-28 21:37:16 | 只看該作者
Springer Tracts in Advanced Roboticshttp://image.papertrans.cn/a/image/152933.jpg
43#
發(fā)表于 2025-3-28 23:00:22 | 只看該作者
44#
發(fā)表于 2025-3-29 05:00:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:06:36 | 只看該作者
,Interessenkollisionen und Innenverh?ltnis,Motion planning was traditionally studied in the area of robotics. In recent years the techniques are increasingly used in virtual environments and games. In many such applications entities move around and their motion must be planned. In particular, we can distinguish the following types of motion:
46#
發(fā)表于 2025-3-29 11:43:43 | 只看該作者
Algorithms for Motion and Navigation in Virtual Environments and Games,Motion planning was traditionally studied in the area of robotics. In recent years the techniques are increasingly used in virtual environments and games. In many such applications entities move around and their motion must be planned. In particular, we can distinguish the following types of motion:
47#
發(fā)表于 2025-3-29 17:00:10 | 只看該作者
A Delaunay Approach to Interactive Cutting in Triangulated Surfaces,triangle meshes in two dimensions, and then generalize it to three dimensional curved surfaces, where bifurcations and annihilations of incisions may occur. This method could be applied to simulating surgery of membrane-like structures, such as veins or intestine.
48#
發(fā)表于 2025-3-29 23:47:05 | 只看該作者
49#
發(fā)表于 2025-3-30 01:45:46 | 只看該作者
50#
發(fā)表于 2025-3-30 05:51:05 | 只看該作者
https://doi.org/10.1007/978-3-7091-7494-4-dimensional planning problem in reparameterizable configuration spaces. In the past, simulated annealing and other energy minimization methods have been used to find knot untangling paths. We develop a probabilistic planner that is capable of untangling knots described by over four hundred variable
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼和浩特市| 汉寿县| 凤城市| 曲水县| 枣阳市| 杭锦后旗| 青州市| 互助| 综艺| 万荣县| 屏南县| 象山县| 金沙县| 石屏县| 马公市| 临洮县| 镇雄县| 定西市| 张家界市| 丹棱县| 莲花县| 淳化县| 虞城县| 峨边| 古丈县| 武强县| 兴化市| 海原县| 慈利县| 巴中市| 景宁| 安阳市| 山阳县| 洪泽县| 信宜市| 南部县| 南岸区| 盐亭县| 定西市| 和田县| 博湖县|