找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Transformation Groups and Algebraic Varieties; Proceedings of the c Vladimir L. Popov Conference proceedings 2004 Springer-Verlag

[復(fù)制鏈接]
樓主: Bunion
31#
發(fā)表于 2025-3-26 22:46:12 | 只看該作者
Delivering Functionality in Foodsto describe, characterize, or classify those quotients . that are affine varieties. While cohomological characterizations of affine . are possible, there is still no general group-theoretic conditions that imply . is affine. In this article, we survey some of the known results about this problem and
32#
發(fā)表于 2025-3-27 04:46:14 | 只看該作者
33#
發(fā)表于 2025-3-27 05:27:47 | 只看該作者
https://doi.org/10.1007/978-3-662-05652-3Group theory; Representation theory; algebra; algebraic varieties; mathematical physics; transformation g
34#
發(fā)表于 2025-3-27 12:18:05 | 只看該作者
978-3-642-05875-2Springer-Verlag Berlin Heidelberg 2004
35#
發(fā)表于 2025-3-27 16:17:49 | 只看該作者
36#
發(fā)表于 2025-3-27 18:04:16 | 只看該作者
37#
發(fā)表于 2025-3-27 23:16:14 | 只看該作者
Delivering Aid Without Governmente that if . < ./2, or the nodes of . are a set-theoretic intersection of hypersurfaces of degree . < .2 and . < (. ? .)(. ? 1)./., then any projective surface contained in . is a complete intersection on .. In particular . is .-factorial. We give more precise results for . surfaces contained in ..
38#
發(fā)表于 2025-3-28 04:04:42 | 只看該作者
Just-in-Time Management Platform,e Hilbert scheme parametrizing irreducible, smooth, projective subvarieties of low codimension and not of general type. We give similar results concerning subvarieties with globally generated tangent bundle.
39#
發(fā)表于 2025-3-28 08:38:07 | 只看該作者
40#
發(fā)表于 2025-3-28 10:40:52 | 只看該作者
https://doi.org/10.1057/9780230319974application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎川县| 霍邱县| 泰和县| 满洲里市| 南川市| 玉环县| 瑞安市| 金溪县| 铜陵市| 许昌市| 招远市| 永春县| 阳高县| 玛沁县| 淄博市| 西青区| 镇安县| 安化县| 望奎县| 天祝| 博乐市| 瓮安县| 山东省| 拉萨市| 章丘市| 伊宁市| 宁海县| 扶绥县| 浮山县| 阳春市| 博野县| 孝昌县| 务川| 厦门市| 库尔勒市| 乐业县| 乌兰察布市| 平潭县| 崇州市| 务川| 潞城市|