找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Transformation Groups and Algebraic Varieties; Proceedings of the c Vladimir L. Popov Conference proceedings 2004 Springer-Verlag

[復制鏈接]
樓主: Bunion
21#
發(fā)表于 2025-3-25 04:26:47 | 只看該作者
22#
發(fā)表于 2025-3-25 11:34:28 | 只看該作者
Normality and Non Normality Of Certain Semigroups and Orbit Closures,ctification of the adjoint quotient of . and its projective normality [K]. These methods are then used to discuss the normality or non normality of certain other orbit closures including determinantal varieties.
23#
發(fā)表于 2025-3-25 13:10:56 | 只看該作者
,Geometric Realization Of ,-shaped Root Systems and Counterexamples To Hilbert’s Fourteenth Problem,application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
24#
發(fā)表于 2025-3-25 17:09:41 | 只看該作者
25#
發(fā)表于 2025-3-25 22:03:34 | 只看該作者
26#
發(fā)表于 2025-3-26 01:03:22 | 只看該作者
27#
發(fā)表于 2025-3-26 05:57:24 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:03 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:13 | 只看該作者
https://doi.org/10.1057/9780230319974application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
30#
發(fā)表于 2025-3-26 20:44:24 | 只看該作者
Losing the Signal in the Noise,jectivized nilpotent varieties of isotropy modules. For them, we classify all orbit closures . such that . where . is the projective dual of .. We give algebraic criteria of projective self-duality for the considered orbit closures.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广丰县| 永春县| 夏邑县| 天镇县| 平山县| 昌吉市| 北京市| 荥经县| 昭平县| 太湖县| 神池县| 平果县| 额济纳旗| 昭苏县| 清新县| 乡宁县| 黄梅县| 区。| 招远市| 沙雅县| 濉溪县| 达州市| 敦化市| 涿州市| 寿光市| 高青县| 罗平县| 郸城县| 泾源县| 阿尔山市| 阿拉尔市| 会昌县| 青海省| 论坛| 平顶山市| 五华县| 都匀市| 基隆市| 盐源县| 台南县| 楚雄市|