找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Transformation Groups and Algebraic Varieties; Proceedings of the c Vladimir L. Popov Conference proceedings 2004 Springer-Verlag

[復(fù)制鏈接]
樓主: Bunion
21#
發(fā)表于 2025-3-25 04:26:47 | 只看該作者
22#
發(fā)表于 2025-3-25 11:34:28 | 只看該作者
Normality and Non Normality Of Certain Semigroups and Orbit Closures,ctification of the adjoint quotient of . and its projective normality [K]. These methods are then used to discuss the normality or non normality of certain other orbit closures including determinantal varieties.
23#
發(fā)表于 2025-3-25 13:10:56 | 只看該作者
,Geometric Realization Of ,-shaped Root Systems and Counterexamples To Hilbert’s Fourteenth Problem,application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
24#
發(fā)表于 2025-3-25 17:09:41 | 只看該作者
25#
發(fā)表于 2025-3-25 22:03:34 | 只看該作者
26#
發(fā)表于 2025-3-26 01:03:22 | 只看該作者
27#
發(fā)表于 2025-3-26 05:57:24 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:03 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:13 | 只看該作者
https://doi.org/10.1057/9780230319974application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
30#
發(fā)表于 2025-3-26 20:44:24 | 只看該作者
Losing the Signal in the Noise,jectivized nilpotent varieties of isotropy modules. For them, we classify all orbit closures . such that . where . is the projective dual of .. We give algebraic criteria of projective self-duality for the considered orbit closures.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通州区| 剑川县| 阿城市| 九寨沟县| 昌都县| 沭阳县| 安西县| 城市| 蒲江县| 元氏县| 丹江口市| 十堰市| 酒泉市| 景谷| 金山区| 安宁市| 屯留县| 略阳县| 深泽县| 石楼县| 商河县| 定边县| 聂荣县| 望城县| 益阳市| 普宁市| 甘泉县| 巴马| 新竹县| 顺昌县| 北碚区| 卓尼县| 永清县| 侯马市| 仙游县| 牡丹江市| 南安市| 洪泽县| 东港市| 逊克县| 襄垣县|