找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology - Homotopy and Homology; Robert M. Switzer Book 2002 Springer-Verlag GmbH Germany 2002 Algebraic topology.YellowSale200

[復制鏈接]
樓主: 挑染
21#
發(fā)表于 2025-3-25 06:34:44 | 只看該作者
Covid-19: New Use of Therapeutics,n properties). If one is trying to show the non-existence of a map .: . → . with certain properties, then one wants to show that no homomorphism .*:.*(.) → .(.)with corresponding properties lies in im .. Thus it is desirable to obtain good limits on the extent of im ..
22#
發(fā)表于 2025-3-25 11:22:25 | 只看該作者
Spectra,d (., .) ∈ → .’. Now in particular, if .* is a reduced cohomology theory satisfying the wedge axiom, then for every . ∈ . . is a cofunctor of the required form, and hence .(-) = [-; ., *] for some (En, *) ∈ .’. The cofunctors hn are not unrelated, however; we have natural equivalences
23#
發(fā)表于 2025-3-25 14:03:12 | 只看該作者
24#
發(fā)表于 2025-3-25 18:29:07 | 只看該作者
Cohomology Operations and Homology Cooperations,n properties). If one is trying to show the non-existence of a map .: . → . with certain properties, then one wants to show that no homomorphism .*:.*(.) → .(.)with corresponding properties lies in im .. Thus it is desirable to obtain good limits on the extent of im ..
25#
發(fā)表于 2025-3-25 21:37:46 | 只看該作者
The Steenrod Algebra and its Dual,s precisely how Cartan did determine this algebra (see [28]) using some heavy guns from homological algebra. We shall take a different approach, however; we shall construct some specific cohomology operations—the Steenrod squares .—and show that they generate the algebra .(.(?.); ?.). It will then n
26#
發(fā)表于 2025-3-26 02:49:13 | 只看該作者
27#
發(fā)表于 2025-3-26 08:23:57 | 只看該作者
Categories, Functors and Natural Transformations,etween objects will be considered; thus, for example, topological spaces and continuous functions, groups and homomorphisms, rings and ring homomorphisms. If we formalize this observation, we are led to the notion of a category.
28#
發(fā)表于 2025-3-26 10:42:07 | 只看該作者
29#
發(fā)表于 2025-3-26 14:33:59 | 只看該作者
30#
發(fā)表于 2025-3-26 17:21:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
房产| 金平| 扎兰屯市| 嘉峪关市| 兴化市| 彰武县| 佛教| 门源| 寻甸| 华亭县| 金沙县| 左云县| 满城县| 务川| 安塞县| 罗江县| 嘉祥县| 罗定市| 余干县| 东港市| 株洲市| 大宁县| 墨竹工卡县| 双牌县| 读书| 钟山县| 巴马| 肥东县| 安顺市| 同仁县| 武清区| 建始县| 英德市| 西乌| 满城县| 张家口市| 金坛市| 福鼎市| 双峰县| 合作市| 八宿县|