找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology - Homotopy and Homology; Robert M. Switzer Book 2002 Springer-Verlag GmbH Germany 2002 Algebraic topology.YellowSale200

[復(fù)制鏈接]
樓主: 挑染
31#
發(fā)表于 2025-3-26 22:23:23 | 只看該作者
-Complexes,ological spaces. One of the difficulties is that given two arbitrary topological spaces . it is very difficult to construct any map .: . → .. If we restricted our attention to a class of spaces built up step by step out of simple building blocks (think of simplicial complexes, for example), then we
32#
發(fā)表于 2025-3-27 04:10:47 | 只看該作者
Homotopy Properties of ,-Complexes,will be consequences of the simplicial approximation theorem. In addition, we shall show that if .: . → . is a map between .-complexes such that .: .(., .) → .(., .) is an isomorphism for all . ? 0, then. is a homotopy equivalence.
33#
發(fā)表于 2025-3-27 07:33:26 | 只看該作者
34#
發(fā)表于 2025-3-27 11:27:59 | 只看該作者
35#
發(fā)表于 2025-3-27 17:29:50 | 只看該作者
Representation Theorems,shall prove a converse result: given a cohomology theory . satisfying the wedge axiom on .’ we shall construct a spectrum . and a natural equivalence of cohomology theories .: .* →p .* on .’. In fact, we shall do somewhat more than that; for any cofunctor .*: .’ → . satisfying the wedge axiom and a
36#
發(fā)表于 2025-3-27 19:09:06 | 只看該作者
Ordinary Homology Theory,ingular homology . is an ordinary homology theory with coefficients . on the category .’. We shall show that any two ordinary homology theories with coefficients . satisfying the wedge and WHE axioms are naturally equivalent. We shall also construct the Eilenberg-MacLane spectrum . with
37#
發(fā)表于 2025-3-28 01:30:42 | 只看該作者
Vector Bundles and ,-Theory,ose for which every fibre has the structure of a vector space in a way which is compatible on neighboring fibres. We show how equivalence classes of such vector bundles over a .-complex can be used to define groups .*(.) in such a way that .* becomes a cohomology theory.
38#
發(fā)表于 2025-3-28 05:22:14 | 只看該作者
39#
發(fā)表于 2025-3-28 10:05:22 | 只看該作者
Products,homology functors: one wants to investigate the existence or nonexistence of maps .: . → . by looking at the corresponding algebraic morphisms .:.(.) → .(.). As we have said before, the richer the algebraic structure on .(.), the more useful . will be for these investigations. In this chapter we int
40#
發(fā)表于 2025-3-28 12:51:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 06:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开鲁县| 武穴市| 尚志市| 武汉市| 宜春市| 吴堡县| 乐平市| 凤冈县| 西乌珠穆沁旗| 富民县| 新营市| 石阡县| 玛沁县| 乐亭县| 枞阳县| 延安市| 安新县| 五河县| 长丰县| 望江县| 永新县| 兴化市| 耒阳市| 满洲里市| 临武县| 轮台县| 连山| 嘉禾县| 砚山县| 林甸县| 耒阳市| 大丰市| 鄂托克前旗| 吉木萨尔县| 武山县| 泸水县| 杭州市| 南靖县| 九江县| 枣阳市| 石泉县|