找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology; Clark Bray,Adrian Butscher,Simon Rubinstein-Salzed Textbook 2021 Springer Nature Switzerland AG 2021 surfaces.cosets.q

[復(fù)制鏈接]
查看: 31620|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:07:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Topology
影響因子2023Clark Bray,Adrian Butscher,Simon Rubinstein-Salzed
視頻videohttp://file.papertrans.cn/153/152726/152726.mp4
發(fā)行地址Assumes no background in abstract algebra or real analysis.Contains a number of examples and exercises.Is based on years of classroom testing
圖書封面Titlebook: Algebraic Topology;  Clark Bray,Adrian Butscher,Simon Rubinstein-Salzed Textbook 2021 Springer Nature Switzerland AG 2021 surfaces.cosets.q
影響因子.Algebraic Topology.?is an introductory textbook based on a class for advanced high-school students at the Stanford University Mathematics Camp (SUMaC) that the authors have taught for many years. Each chapter, or lecture, corresponds to one day of class at SUMaC. The book begins with the preliminaries needed for the formal definition of a surface. Other topics covered in the book include the classification of surfaces, group theory, the fundamental group, and homology.. . This book assumes no background in abstract algebra or real analysis, and the material from those subjects is presented as needed in the text. This makes the book readable to undergraduates or high-school students who do not have the background typically assumed in an algebraic topology book or class. The book contains many examples and exercises, allowing it to be used for both self-study and for an introductory undergraduate topology course..
Pindex Textbook 2021
The information of publication is updating

書目名稱Algebraic Topology影響因子(影響力)




書目名稱Algebraic Topology影響因子(影響力)學(xué)科排名




書目名稱Algebraic Topology網(wǎng)絡(luò)公開度




書目名稱Algebraic Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Topology被引頻次




書目名稱Algebraic Topology被引頻次學(xué)科排名




書目名稱Algebraic Topology年度引用




書目名稱Algebraic Topology年度引用學(xué)科排名




書目名稱Algebraic Topology讀者反饋




書目名稱Algebraic Topology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:29:19 | 只看該作者
Stefan Berger,Stefano Musso,Christian Wickemorphism invariant that is associated to a topological space. Rather than being a number like the Euler characteristic . or a boolean invariant like orientability, the fundamental group?associates a . to ., denoted .. Furthermore if . is homeomorphic to ., then the fundamental groups . and . are iso
地板
發(fā)表于 2025-3-22 06:23:32 | 只看該作者
Milan, the Story of an Urban Metamorphosismany more spaces whose fundamental groups we would like to know. In order to work them out, we will try to build them up from spaces whose fundamental groups we already know. Before we introduce the general theorem, let us look at an example, that of the wedge of two circles, meaning two circles tha
5#
發(fā)表于 2025-3-22 10:33:12 | 只看該作者
Stefan Berger,Stefano Musso,Christian Wicketing maps from the circle . to a space .. There are higher-dimensional versions of the fundamental group, known as homotopy groups and denoted by .; these are defined in terms of homotopy classes of maps from . to .. In computing ., we already found that we needed a somewhat involved argument. Nonet
6#
發(fā)表于 2025-3-22 13:14:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:53:30 | 只看該作者
https://doi.org/10.1007/978-3-030-70608-1surfaces; cosets; quotient groups; normal subgroups; Mayer-Vietoris sequence; homology; Seifert-Van Kampen
8#
發(fā)表于 2025-3-22 22:09:58 | 只看該作者
9#
發(fā)表于 2025-3-23 04:14:52 | 只看該作者
Introduction to Group Theory, spaces are homeomorphic or not. However, there is a wide class of other invariants, which associate other sorts of objects to spaces. For the next few chapters, we will build up?to the fundamental group, and then we will work on understanding its behavior.
10#
發(fā)表于 2025-3-23 07:19:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旅游| 汉川市| 额济纳旗| 斗六市| 沅江市| 桐乡市| 历史| 临澧县| 平南县| 石河子市| 溆浦县| 囊谦县| 抚远县| 隆安县| 托克逊县| 卓尼县| 嘉峪关市| 镇沅| 香港| 平武县| 贡嘎县| 城口县| 乐昌市| 南澳县| 句容市| 黔西| 滁州市| 林芝县| 汉源县| 益阳市| 深泽县| 澄江县| 清流县| 遵义县| 夏津县| 酉阳| 郯城县| 澎湖县| 阿荣旗| 郑州市| 景谷|