找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology; Clark Bray,Adrian Butscher,Simon Rubinstein-Salzed Textbook 2021 Springer Nature Switzerland AG 2021 surfaces.cosets.q

[復(fù)制鏈接]
查看: 31627|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:07:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Algebraic Topology
影響因子2023Clark Bray,Adrian Butscher,Simon Rubinstein-Salzed
視頻videohttp://file.papertrans.cn/153/152726/152726.mp4
發(fā)行地址Assumes no background in abstract algebra or real analysis.Contains a number of examples and exercises.Is based on years of classroom testing
圖書(shū)封面Titlebook: Algebraic Topology;  Clark Bray,Adrian Butscher,Simon Rubinstein-Salzed Textbook 2021 Springer Nature Switzerland AG 2021 surfaces.cosets.q
影響因子.Algebraic Topology.?is an introductory textbook based on a class for advanced high-school students at the Stanford University Mathematics Camp (SUMaC) that the authors have taught for many years. Each chapter, or lecture, corresponds to one day of class at SUMaC. The book begins with the preliminaries needed for the formal definition of a surface. Other topics covered in the book include the classification of surfaces, group theory, the fundamental group, and homology.. . This book assumes no background in abstract algebra or real analysis, and the material from those subjects is presented as needed in the text. This makes the book readable to undergraduates or high-school students who do not have the background typically assumed in an algebraic topology book or class. The book contains many examples and exercises, allowing it to be used for both self-study and for an introductory undergraduate topology course..
Pindex Textbook 2021
The information of publication is updating

書(shū)目名稱(chēng)Algebraic Topology影響因子(影響力)




書(shū)目名稱(chēng)Algebraic Topology影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Algebraic Topology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Algebraic Topology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Algebraic Topology被引頻次




書(shū)目名稱(chēng)Algebraic Topology被引頻次學(xué)科排名




書(shū)目名稱(chēng)Algebraic Topology年度引用




書(shū)目名稱(chēng)Algebraic Topology年度引用學(xué)科排名




書(shū)目名稱(chēng)Algebraic Topology讀者反饋




書(shū)目名稱(chēng)Algebraic Topology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:29:19 | 只看該作者
Stefan Berger,Stefano Musso,Christian Wickemorphism invariant that is associated to a topological space. Rather than being a number like the Euler characteristic . or a boolean invariant like orientability, the fundamental group?associates a . to ., denoted .. Furthermore if . is homeomorphic to ., then the fundamental groups . and . are iso
地板
發(fā)表于 2025-3-22 06:23:32 | 只看該作者
Milan, the Story of an Urban Metamorphosismany more spaces whose fundamental groups we would like to know. In order to work them out, we will try to build them up from spaces whose fundamental groups we already know. Before we introduce the general theorem, let us look at an example, that of the wedge of two circles, meaning two circles tha
5#
發(fā)表于 2025-3-22 10:33:12 | 只看該作者
Stefan Berger,Stefano Musso,Christian Wicketing maps from the circle . to a space .. There are higher-dimensional versions of the fundamental group, known as homotopy groups and denoted by .; these are defined in terms of homotopy classes of maps from . to .. In computing ., we already found that we needed a somewhat involved argument. Nonet
6#
發(fā)表于 2025-3-22 13:14:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:53:30 | 只看該作者
https://doi.org/10.1007/978-3-030-70608-1surfaces; cosets; quotient groups; normal subgroups; Mayer-Vietoris sequence; homology; Seifert-Van Kampen
8#
發(fā)表于 2025-3-22 22:09:58 | 只看該作者
9#
發(fā)表于 2025-3-23 04:14:52 | 只看該作者
Introduction to Group Theory, spaces are homeomorphic or not. However, there is a wide class of other invariants, which associate other sorts of objects to spaces. For the next few chapters, we will build up?to the fundamental group, and then we will work on understanding its behavior.
10#
發(fā)表于 2025-3-23 07:19:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪江市| 夏津县| 新蔡县| 宣化县| 门头沟区| 百色市| 咸阳市| 元江| 昭通市| 黑水县| 梁平县| 商河县| 壤塘县| 长丰县| 屏东县| 仲巴县| 隆昌县| 余姚市| 东乌珠穆沁旗| 江城| 毕节市| 广宗县| 浦县| 宣化县| 木兰县| 迭部县| 山东省| 咸宁市| 曲麻莱县| 宁城县| 寿宁县| 天峨县| 柳州市| 玉溪市| 年辖:市辖区| 沁源县| 阿克陶县| 清徐县| 霍城县| 炎陵县| 沽源县|