找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Multiplicity of Eigenvalues of Linear Operators; J. López-Gómez,C. Mora-Corral Book 2007 Birkh?user Basel 2007 Eigenvalue.Matrix

[復制鏈接]
樓主: 傷害
11#
發(fā)表于 2025-3-23 12:13:54 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:38 | 只看該作者
The Spectral Theorem for Matrix Polynomialsature. More precisely, the family . defined in (10.1) is said to be a matrix polynomial of order . and degree .. The main goal of this chapter is to obtain a spectral theorem for matrix polynomials, respecting the spirit of the Jordan Theorem 1.2.1.
13#
發(fā)表于 2025-3-23 18:28:31 | 只看該作者
14#
發(fā)表于 2025-3-24 01:52:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:24 | 只看該作者
16#
發(fā)表于 2025-3-24 08:02:58 | 只看該作者
17#
發(fā)表于 2025-3-24 12:55:12 | 只看該作者
Jeremy W. Baxter,Graham S. Hornature. More precisely, the family . defined in (10.1) is said to be a matrix polynomial of order . and degree .. The main goal of this chapter is to obtain a spectral theorem for matrix polynomials, respecting the spirit of the Jordan Theorem 1.2.1.
18#
發(fā)表于 2025-3-24 17:17:31 | 只看該作者
https://doi.org/10.1007/978-3-663-09573-6This chapter describes an equivalent approach to the concept of multiplicity . introduced in Chapter 4; in this occasion by means of an appropriate polynomial factorization of . at .. However, at first glance these approaches are seemingly completely different.
19#
發(fā)表于 2025-3-24 19:42:54 | 只看該作者
20#
發(fā)表于 2025-3-25 00:40:04 | 只看該作者
https://doi.org/10.1007/11683704The stability results of Section 8.4 can be regarded as infinite-dimensional versions of the classic Rouché theorem. A closely related topic in complex function theory is the so-called ., otherwise known as the ., which has been established by Theorem 3.4.1 (for classical families) and Corollary 6.5.2 in a finite-dimensional setting.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嘉兴市| 咸阳市| 渑池县| 东台市| 拜泉县| 额尔古纳市| 昌都县| 荔浦县| 丰县| 台中市| 甘南县| 政和县| 赤城县| 云浮市| 枣强县| 循化| 方山县| 木兰县| 三门峡市| 台湾省| 广河县| 蒙城县| 德阳市| 鄂伦春自治旗| 桃园县| 榆社县| 宝丰县| 苏尼特右旗| 泰宁县| 琼海市| 天峻县| 鸡西市| 华容县| 石景山区| 孝昌县| 双流县| 浦东新区| 和硕县| 钟祥市| 龙陵县| 黔南|