找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Multiplicity of Eigenvalues of Linear Operators; J. López-Gómez,C. Mora-Corral Book 2007 Birkh?user Basel 2007 Eigenvalue.Matrix

[復制鏈接]
樓主: 傷害
11#
發(fā)表于 2025-3-23 12:13:54 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:38 | 只看該作者
The Spectral Theorem for Matrix Polynomialsature. More precisely, the family . defined in (10.1) is said to be a matrix polynomial of order . and degree .. The main goal of this chapter is to obtain a spectral theorem for matrix polynomials, respecting the spirit of the Jordan Theorem 1.2.1.
13#
發(fā)表于 2025-3-23 18:28:31 | 只看該作者
14#
發(fā)表于 2025-3-24 01:52:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:24 | 只看該作者
16#
發(fā)表于 2025-3-24 08:02:58 | 只看該作者
17#
發(fā)表于 2025-3-24 12:55:12 | 只看該作者
Jeremy W. Baxter,Graham S. Hornature. More precisely, the family . defined in (10.1) is said to be a matrix polynomial of order . and degree .. The main goal of this chapter is to obtain a spectral theorem for matrix polynomials, respecting the spirit of the Jordan Theorem 1.2.1.
18#
發(fā)表于 2025-3-24 17:17:31 | 只看該作者
https://doi.org/10.1007/978-3-663-09573-6This chapter describes an equivalent approach to the concept of multiplicity . introduced in Chapter 4; in this occasion by means of an appropriate polynomial factorization of . at .. However, at first glance these approaches are seemingly completely different.
19#
發(fā)表于 2025-3-24 19:42:54 | 只看該作者
20#
發(fā)表于 2025-3-25 00:40:04 | 只看該作者
https://doi.org/10.1007/11683704The stability results of Section 8.4 can be regarded as infinite-dimensional versions of the classic Rouché theorem. A closely related topic in complex function theory is the so-called ., otherwise known as the ., which has been established by Theorem 3.4.1 (for classical families) and Corollary 6.5.2 in a finite-dimensional setting.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
女性| 顺义区| 吴桥县| 永德县| 黄山市| 宽甸| 成都市| 元朗区| 丰县| 红河县| 小金县| 剑河县| 德钦县| 蒲江县| 石棉县| 嘉义市| 武功县| 宾川县| 渑池县| 海门市| 黄平县| 长垣县| 静乐县| 奇台县| 开化县| 墨竹工卡县| 南丹县| 铁力市| 称多县| 阜阳市| 思茅市| 靖州| 讷河市| 宣恩县| 健康| 开原市| 来凤县| 岳池县| 金沙县| 高雄县| 怀远县|