找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Multiplicity of Eigenvalues of Linear Operators; J. López-Gómez,C. Mora-Corral Book 2007 Birkh?user Basel 2007 Eigenvalue.Matrix

[復(fù)制鏈接]
查看: 45847|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:15:58 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebraic Multiplicity of Eigenvalues of Linear Operators
影響因子2023J. López-Gómez,C. Mora-Corral
視頻videohttp://file.papertrans.cn/153/152683/152683.mp4
發(fā)行地址Introduces readers to the classic theory with the most modern terminology, and, simultaneously, conducts readers comfortably to the latest developments in the theory of the algebraic multiplicity of e
學(xué)科分類Operator Theory: Advances and Applications
圖書封面Titlebook: Algebraic Multiplicity of Eigenvalues of Linear Operators;  J. López-Gómez,C. Mora-Corral Book 2007 Birkh?user Basel 2007 Eigenvalue.Matrix
影響因子This book analyzes the existence and uniqueness of a generalized algebraic m- tiplicity for a general one-parameter family L of bounded linear operators with Fredholm index zero at a value of the parameter ? whereL(? ) is non-invertible. 0 0 Precisely, given K?{R,C}, two Banach spaces U and V over K, an open subset ? ? K,andapoint ? ? ?, our admissible operator families are the maps 0 r L?C (? ,L(U,V)) (1) for some r? N, such that L(? )? Fred (U,V); 0 0 hereL(U,V) stands for the space of linear continuous operatorsfrom U to V,and Fred (U,V) is its subset consisting of all Fredholm operators of index zero. From 0 the point of view of its novelty, the main achievements of this book are reached in case K = R, since in the case K = C and r = 1, most of its contents are classic, except for the axiomatization theorem of the multiplicity.
Pindex Book 2007
The information of publication is updating

書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators影響因子(影響力)




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators影響因子(影響力)學(xué)科排名




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators網(wǎng)絡(luò)公開度




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators被引頻次




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators被引頻次學(xué)科排名




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators年度引用




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators年度引用學(xué)科排名




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators讀者反饋




書目名稱Algebraic Multiplicity of Eigenvalues of Linear Operators讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:48 | 只看該作者
N. Marchand,J.-P. Bailon,J. I. Dicksonppropriate definition of .(.) when . is an arbitrary function, as well as in studying the most important analytical properties of .(.). This chapter covers these issues for the special, but important, case when . is a certain holomorphic function and ..
板凳
發(fā)表于 2025-3-22 01:49:21 | 只看該作者
地板
發(fā)表于 2025-3-22 05:13:16 | 只看該作者
Fatigue Crack Initiation in Ironat . When . ∈ Eig., the point . is said to be an . of . if there exist . > 0 and . ≥ 1 such that, for each 0 < |. ? .| < ., the operator . is an isomorphism and . The main goal of this chapter is to introduce the concept of algebraic multiplicity of . at any algebraic eigenvalue .. This algebraic mu
5#
發(fā)表于 2025-3-22 10:41:26 | 只看該作者
Katarina Strbac,Branislav Milosavljevicralized eigenvectors, already studied in Section 1.3. It will provide us with a further approach to the algebraic multiplicities . and . introduced and analyzed in Chapters 4 and 5, respectively, whose axiomatization has already been accomplished through the uniqueness theorems included in Chapter 6
6#
發(fā)表于 2025-3-22 14:09:43 | 只看該作者
7#
發(fā)表于 2025-3-22 19:19:03 | 只看該作者
8#
發(fā)表于 2025-3-22 22:03:51 | 只看該作者
9#
發(fā)表于 2025-3-23 04:53:08 | 只看該作者
The Jordan Theoremct sum of the ascent generalized eigenspaces associated with each of the eigenvalues of .. Then, by choosing an appropriate basis in each of the ascent generalized eigenspaces, the Jordan canonical form of . is constructed. These bases are chosen in order to attain a similar matrix to . with a maximum number of zeros.
10#
發(fā)表于 2025-3-23 09:32:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如东县| 香格里拉县| 外汇| 锡林郭勒盟| 赣榆县| 长白| 彭水| 临洮县| 逊克县| 平利县| 古浪县| 高唐县| 清苑县| 安丘市| 南投县| 驻马店市| 永济市| 桂平市| 翁牛特旗| 浠水县| 延安市| 定兴县| 平谷区| 兴城市| 淮阳县| 汕尾市| 宜城市| 安阳市| 江门市| 嘉祥县| 新干县| 万载县| 临邑县| 卢龙县| 左贡县| 佛冈县| 中阳县| 高雄市| 县级市| 灵石县| 台南县|