找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[復制鏈接]
樓主: Encounter
41#
發(fā)表于 2025-3-28 16:46:56 | 只看該作者
Oxygen Precipitation in Silicon,In this paper we study the kernel of the homomorphism . of the braid group . in the handlebody . to the braid group .. We prove that this kernel is semi-direct product of free groups. Also, we introduce an algebra ., which is some analog of the Hecke algebra ., constructed by the braid group?..
42#
發(fā)表于 2025-3-28 21:42:42 | 只看該作者
43#
發(fā)表于 2025-3-29 02:51:08 | 只看該作者
Representation Theory of Framisations of Knot AlgebrasWe study the algebraic structure and the representation theory of the Yokonuma–Hecke algebra of type ., its generalisations, the affine and cyclotomic Yokonuma–Hecke algebras, and its Temperley–Lieb type quotients, the Yokonuma–Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and the Complex Reflection Temperley–Lieb algebra.
44#
發(fā)表于 2025-3-29 06:47:15 | 只看該作者
45#
發(fā)表于 2025-3-29 11:01:01 | 只看該作者
46#
發(fā)表于 2025-3-29 14:42:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:24:07 | 只看該作者
Interfacial Fracture in Alloy Steelshe Yokonuma–Hecke algebra of type .. More precisely, we present all three possible quotient algebras the emerged during this construction and we discuss their dimension, linear bases, representation theory and the necessary and sufficient conditions for the unique Markov trace of the Yokonuma–Hecke
48#
發(fā)表于 2025-3-29 23:23:24 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:31 | 只看該作者
Fatigue Crack Initiation with Creephe other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou. The purpose of this paper is to show the main concepts and results of both framizations, giving emphasis to the second one, and to provide a preliminary comparison of the invariants constructed from both framization
50#
發(fā)表于 2025-3-30 04:51:12 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
中宁县| 山阳县| 秦安县| 徐水县| 左贡县| 永兴县| 淮安市| 宜城市| 太保市| 韶山市| 蒲城县| 措美县| 龙陵县| 卓资县| 白山市| 静安区| 新野县| 忻城县| 平昌县| 山丹县| 达州市| 拜城县| 南投县| 班玛县| 永德县| 慈利县| 马山县| 海丰县| 松溪县| 临邑县| 宝应县| 普陀区| 麟游县| 怀化市| 西城区| 左权县| 南城县| 锡林郭勒盟| 祁门县| 安新县| 定远县|