找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[復制鏈接]
樓主: Encounter
41#
發(fā)表于 2025-3-28 16:46:56 | 只看該作者
Oxygen Precipitation in Silicon,In this paper we study the kernel of the homomorphism . of the braid group . in the handlebody . to the braid group .. We prove that this kernel is semi-direct product of free groups. Also, we introduce an algebra ., which is some analog of the Hecke algebra ., constructed by the braid group?..
42#
發(fā)表于 2025-3-28 21:42:42 | 只看該作者
43#
發(fā)表于 2025-3-29 02:51:08 | 只看該作者
Representation Theory of Framisations of Knot AlgebrasWe study the algebraic structure and the representation theory of the Yokonuma–Hecke algebra of type ., its generalisations, the affine and cyclotomic Yokonuma–Hecke algebras, and its Temperley–Lieb type quotients, the Yokonuma–Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and the Complex Reflection Temperley–Lieb algebra.
44#
發(fā)表于 2025-3-29 06:47:15 | 只看該作者
45#
發(fā)表于 2025-3-29 11:01:01 | 只看該作者
46#
發(fā)表于 2025-3-29 14:42:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:24:07 | 只看該作者
Interfacial Fracture in Alloy Steelshe Yokonuma–Hecke algebra of type .. More precisely, we present all three possible quotient algebras the emerged during this construction and we discuss their dimension, linear bases, representation theory and the necessary and sufficient conditions for the unique Markov trace of the Yokonuma–Hecke
48#
發(fā)表于 2025-3-29 23:23:24 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:31 | 只看該作者
Fatigue Crack Initiation with Creephe other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou. The purpose of this paper is to show the main concepts and results of both framizations, giving emphasis to the second one, and to provide a preliminary comparison of the invariants constructed from both framization
50#
發(fā)表于 2025-3-30 04:51:12 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
吐鲁番市| 元江| 江西省| 米易县| 大连市| 华容县| 闽侯县| 侯马市| 南汇区| 大兴区| 陕西省| 新密市| 犍为县| 黔江区| 新密市| 连州市| 吉水县| 安新县| 喀喇沁旗| 固安县| 时尚| 常州市| 金山区| 延安市| 阳信县| 华亭县| 凭祥市| 凉城县| 吉木乃县| 瑞昌市| 龙山县| 枣阳市| 正阳县| 谷城县| 新泰市| 砀山县| 锡林浩特市| 炉霍县| 和龙市| 肇州县| 怀仁县|