找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[復(fù)制鏈接]
樓主: Encounter
11#
發(fā)表于 2025-3-23 10:36:20 | 只看該作者
Fourier BraidsFourier series allows an approximation by finite Laurent polynomials .(.). We define an algebraic discriminant ., such that an .-braid is given by those .(.) satisfying the condition (.) of having all roots not on the unit circle. We study property (.) from the algebraic and topological viewpoint. U
12#
發(fā)表于 2025-3-23 15:37:09 | 只看該作者
13#
發(fā)表于 2025-3-23 19:42:04 | 只看該作者
14#
發(fā)表于 2025-3-24 01:33:51 | 只看該作者
2194-1009 y theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling
15#
發(fā)表于 2025-3-24 04:57:30 | 只看該作者
An Introduction to Disorder in Solids,their properties. We focus, in particular, on the family of 2-variable classical link invariants that are not topologically equivalent to the HOMFLYPT polynomial and on the 3-variable classical link invariant that generalizes this family and the HOMFLYPT polynomial.
16#
發(fā)表于 2025-3-24 10:07:37 | 只看該作者
H. Pinto,A. Stashans,P. Sanchez and its associated eigenvalues providing measures of entanglement that can be applied to complex systems. We describe the general one-dimensional case and applications to one-dimensional Olympic gels and to tubular filamental structures.
17#
發(fā)表于 2025-3-24 13:39:22 | 只看該作者
18#
發(fā)表于 2025-3-24 15:36:16 | 只看該作者
Defects in Non-Crystalline Oxidese ions results in diverse interactions that directly affect the microscopic structure and the dynamical behaviour of ILs. Molecular simulation methods using optimized force fields are applied for the study of the complex dynamics and the spatial organization in ILs.
19#
發(fā)表于 2025-3-24 20:22:54 | 只看該作者
20#
發(fā)表于 2025-3-25 01:55:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨州市| 胶州市| 文登市| 平利县| 夹江县| 崇文区| 临潭县| 新河县| 女性| 平江县| 兴业县| 泸西县| 云梦县| 濮阳市| 慈利县| 呼图壁县| 墨竹工卡县| 永安市| 营口市| 卓尼县| 清徐县| 新宁县| 太白县| 浙江省| 那曲县| 蚌埠市| 庆城县| 临泉县| 蓝山县| 常德市| 潮安县| 中山市| 诸城市| 澄江县| 大同市| 保德县| 正阳县| 涪陵区| 南汇区| 息烽县| 连山|