找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Methods in Nonlinear Perturbation Theory; V. N. Bogaevski,A. Povzner Book 1991 Springer-Verlag New York, Inc. 1991 algebra.appli

[復(fù)制鏈接]
查看: 52857|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:54:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Methods in Nonlinear Perturbation Theory
影響因子2023V. N. Bogaevski,A. Povzner
視頻videohttp://file.papertrans.cn/153/152674/152674.mp4
學(xué)科分類Applied Mathematical Sciences
圖書封面Titlebook: Algebraic Methods in Nonlinear Perturbation Theory;  V. N. Bogaevski,A. Povzner Book 1991 Springer-Verlag New York, Inc. 1991 algebra.appli
影響因子Many books have already been written about the perturbation theory of differential equations with a small parameter. Therefore, we would like to give some reasons why the reader should bother with still another book on this topic. Speaking for the present only about ordinary differential equations and their applications, we notice that methods of solutions are so numerous and diverse that this part of applied mathematics appears as an aggregate of poorly connected methods. The majority of these methods require some previous guessing of a structure of the desired asymptotics. The Poincare method of normal forms and the Bogolyubov-Krylov- Mitropolsky averaging methods, well known in the literature, should be mentioned specifically in connection with what will follow. These methods do not assume an immediate search for solutions in some special form, but make use of changes of variables close to the identity transformation which bring the initial system to a certain normal form. Applicability of these methods is restricted by special forms of the initial systems.
Pindex Book 1991
The information of publication is updating

書目名稱Algebraic Methods in Nonlinear Perturbation Theory影響因子(影響力)




書目名稱Algebraic Methods in Nonlinear Perturbation Theory影響因子(影響力)學(xué)科排名




書目名稱Algebraic Methods in Nonlinear Perturbation Theory網(wǎng)絡(luò)公開度




書目名稱Algebraic Methods in Nonlinear Perturbation Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Methods in Nonlinear Perturbation Theory被引頻次




書目名稱Algebraic Methods in Nonlinear Perturbation Theory被引頻次學(xué)科排名




書目名稱Algebraic Methods in Nonlinear Perturbation Theory年度引用




書目名稱Algebraic Methods in Nonlinear Perturbation Theory年度引用學(xué)科排名




書目名稱Algebraic Methods in Nonlinear Perturbation Theory讀者反饋




書目名稱Algebraic Methods in Nonlinear Perturbation Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:03 | 只看該作者
0066-5452 e to give some reasons why the reader should bother with still another book on this topic. Speaking for the present only about ordinary differential equations and their applications, we notice that methods of solutions are so numerous and diverse that this part of applied mathematics appears as an a
板凳
發(fā)表于 2025-3-22 01:53:31 | 只看該作者
Book 1991on with what will follow. These methods do not assume an immediate search for solutions in some special form, but make use of changes of variables close to the identity transformation which bring the initial system to a certain normal form. Applicability of these methods is restricted by special forms of the initial systems.
地板
發(fā)表于 2025-3-22 05:28:22 | 只看該作者
5#
發(fā)表于 2025-3-22 10:45:11 | 只看該作者
6#
發(fā)表于 2025-3-22 16:20:53 | 只看該作者
978-1-4612-8770-4Springer-Verlag New York, Inc. 1991
7#
發(fā)表于 2025-3-22 20:51:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:14:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:22:19 | 只看該作者
Richard L. Haedrich,Nigel R. MerrettIn this chapter we construct an analogue of the matrix perturbation theory for systems of the form . where . ., or, in vector notation, ..
10#
發(fā)表于 2025-3-23 07:58:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
进贤县| 瑞丽市| 渭南市| 琼结县| 临邑县| 宝丰县| 呼伦贝尔市| 新民市| 若尔盖县| 湖北省| 乡宁县| 濮阳县| 昌平区| 梁平县| 玛纳斯县| 阳谷县| 伊川县| 金川县| 墨竹工卡县| 渝中区| 阿克陶县| 辽源市| 漳州市| 商洛市| 尉氏县| 梅州市| 诸暨市| 自贡市| 巩留县| 文化| 井研县| 化隆| 历史| 大足县| 慈溪市| 涪陵区| 儋州市| 英德市| 通州市| 托克托县| 江源县|