找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Methods in Nonlinear Perturbation Theory; V. N. Bogaevski,A. Povzner Book 1991 Springer-Verlag New York, Inc. 1991 algebra.appli

[復(fù)制鏈接]
查看: 52858|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:54:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Methods in Nonlinear Perturbation Theory
影響因子2023V. N. Bogaevski,A. Povzner
視頻videohttp://file.papertrans.cn/153/152674/152674.mp4
學(xué)科分類Applied Mathematical Sciences
圖書(shū)封面Titlebook: Algebraic Methods in Nonlinear Perturbation Theory;  V. N. Bogaevski,A. Povzner Book 1991 Springer-Verlag New York, Inc. 1991 algebra.appli
影響因子Many books have already been written about the perturbation theory of differential equations with a small parameter. Therefore, we would like to give some reasons why the reader should bother with still another book on this topic. Speaking for the present only about ordinary differential equations and their applications, we notice that methods of solutions are so numerous and diverse that this part of applied mathematics appears as an aggregate of poorly connected methods. The majority of these methods require some previous guessing of a structure of the desired asymptotics. The Poincare method of normal forms and the Bogolyubov-Krylov- Mitropolsky averaging methods, well known in the literature, should be mentioned specifically in connection with what will follow. These methods do not assume an immediate search for solutions in some special form, but make use of changes of variables close to the identity transformation which bring the initial system to a certain normal form. Applicability of these methods is restricted by special forms of the initial systems.
Pindex Book 1991
The information of publication is updating

書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory影響因子(影響力)




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory被引頻次




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory被引頻次學(xué)科排名




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory年度引用




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory年度引用學(xué)科排名




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory讀者反饋




書(shū)目名稱Algebraic Methods in Nonlinear Perturbation Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:03 | 只看該作者
0066-5452 e to give some reasons why the reader should bother with still another book on this topic. Speaking for the present only about ordinary differential equations and their applications, we notice that methods of solutions are so numerous and diverse that this part of applied mathematics appears as an a
板凳
發(fā)表于 2025-3-22 01:53:31 | 只看該作者
Book 1991on with what will follow. These methods do not assume an immediate search for solutions in some special form, but make use of changes of variables close to the identity transformation which bring the initial system to a certain normal form. Applicability of these methods is restricted by special forms of the initial systems.
地板
發(fā)表于 2025-3-22 05:28:22 | 只看該作者
5#
發(fā)表于 2025-3-22 10:45:11 | 只看該作者
6#
發(fā)表于 2025-3-22 16:20:53 | 只看該作者
978-1-4612-8770-4Springer-Verlag New York, Inc. 1991
7#
發(fā)表于 2025-3-22 20:51:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:14:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:22:19 | 只看該作者
Richard L. Haedrich,Nigel R. MerrettIn this chapter we construct an analogue of the matrix perturbation theory for systems of the form . where . ., or, in vector notation, ..
10#
發(fā)表于 2025-3-23 07:58:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临城县| 利津县| 辰溪县| 湛江市| 全椒县| 利川市| 兴仁县| 新密市| 汉阴县| 廊坊市| 城步| 镶黄旗| 绥棱县| 深水埗区| 香河县| 晴隆县| 邵武市| 滦平县| 永胜县| 临沂市| 淄博市| 江山市| 汉阴县| 鄂托克前旗| 盐津县| 湘阴县| 肇庆市| 潼关县| 浙江省| 鹤庆县| 定陶县| 曲水县| 鄂尔多斯市| 武宣县| 三原县| 天水市| 武义县| 铁力市| 浦城县| 怀远县| 元朗区|