找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Algebraic K-Theory: Connections with Geometry and Topology; J. F. Jardine,V. P. Snaith Book 1989 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 懇求
51#
發(fā)表于 2025-3-30 11:18:24 | 只看該作者
Beanspruchung stabf?rmiger Bauteile over a field k, then Pic(A), SK.(A) and SK.(A) are naturally modules over the ring W(k) of Witt vectors over k. If A is any commutative ring, NPic(A), NSK.(A) and NSK.(A) are naturally modules over W(A). The K-theory transfer map, defined when B is an A-algebra which is a finite projective A-module, sends SK.(B) to SK.(A) and SK.(B) to SK.(A).
52#
發(fā)表于 2025-3-30 14:17:49 | 只看該作者
Beanspruchung stabf?rmiger Bauteileety to intermediate Jacobians. These formulas generalize some previously obtained via iterated integrals on Riemann surfaces, and are obtained much more easily. Details are given concerning the representation of differential characters by differential forms with singularities.
53#
發(fā)表于 2025-3-30 17:20:35 | 只看該作者
54#
發(fā)表于 2025-3-31 00:39:45 | 只看該作者
J. Lackmann,H. Mertens,R. Liebich multiple pullback of hereditary rings over semi-simple rings. Applications of this sequence include computations of NK.(?G) for * = 1, 2 and of an upper bound for K.(D.), D. the dihedral group of order 30.
55#
發(fā)表于 2025-3-31 03:45:45 | 只看該作者
J. Lackmann,H. Mertens,R. Liebichgebra. By the Loday-Quillen theorem the primitive part of this homology is cyclic homology, which, therefore, inherits lambda operations. The aim of this paper is to give an explicit formula for these lambda operations on cyclic homology. It turns out that the classical Euler partition of the symmetric group is involved.
56#
發(fā)表于 2025-3-31 07:19:42 | 只看該作者
Beanspruchung stabf?rmiger Bauteileegories on simplicial spaces. The group completion theorem, which relates the homology of a topological monoid to the homology of the loopspace of its classifying space, will be derived as a consequence.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦南县| 永丰县| 伊金霍洛旗| 宜川县| 白水县| 马边| 扎鲁特旗| 武清区| 两当县| 西乌珠穆沁旗| 达州市| 屏南县| 阿拉尔市| 东城区| 崇州市| 垦利县| 九龙城区| 三都| 托克托县| 南江县| 龙州县| 扶沟县| 大石桥市| 台北市| 金华市| 外汇| 垦利县| 沂南县| 大兴区| 浮梁县| 白朗县| 静海县| 新干县| 邛崃市| 汉寿县| 扬中市| 六枝特区| 石楼县| 额济纳旗| 淮北市| 凉山|