找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Algebraic K-Theory: Connections with Geometry and Topology; J. F. Jardine,V. P. Snaith Book 1989 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 懇求
51#
發(fā)表于 2025-3-30 11:18:24 | 只看該作者
Beanspruchung stabf?rmiger Bauteile over a field k, then Pic(A), SK.(A) and SK.(A) are naturally modules over the ring W(k) of Witt vectors over k. If A is any commutative ring, NPic(A), NSK.(A) and NSK.(A) are naturally modules over W(A). The K-theory transfer map, defined when B is an A-algebra which is a finite projective A-module, sends SK.(B) to SK.(A) and SK.(B) to SK.(A).
52#
發(fā)表于 2025-3-30 14:17:49 | 只看該作者
Beanspruchung stabf?rmiger Bauteileety to intermediate Jacobians. These formulas generalize some previously obtained via iterated integrals on Riemann surfaces, and are obtained much more easily. Details are given concerning the representation of differential characters by differential forms with singularities.
53#
發(fā)表于 2025-3-30 17:20:35 | 只看該作者
54#
發(fā)表于 2025-3-31 00:39:45 | 只看該作者
J. Lackmann,H. Mertens,R. Liebich multiple pullback of hereditary rings over semi-simple rings. Applications of this sequence include computations of NK.(?G) for * = 1, 2 and of an upper bound for K.(D.), D. the dihedral group of order 30.
55#
發(fā)表于 2025-3-31 03:45:45 | 只看該作者
J. Lackmann,H. Mertens,R. Liebichgebra. By the Loday-Quillen theorem the primitive part of this homology is cyclic homology, which, therefore, inherits lambda operations. The aim of this paper is to give an explicit formula for these lambda operations on cyclic homology. It turns out that the classical Euler partition of the symmetric group is involved.
56#
發(fā)表于 2025-3-31 07:19:42 | 只看該作者
Beanspruchung stabf?rmiger Bauteileegories on simplicial spaces. The group completion theorem, which relates the homology of a topological monoid to the homology of the loopspace of its classifying space, will be derived as a consequence.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼勒克县| 鹿邑县| 景洪市| 嘉荫县| 泸溪县| 澜沧| 临泉县| 安阳县| 文山县| 达拉特旗| 衡东县| 罗定市| 青神县| 石门县| 南康市| 扎赉特旗| 车致| 秦安县| 疏勒县| 资源县| 双江| 潜山县| 西丰县| 牟定县| 绥棱县| 什邡市| 宁河县| 郓城县| 都匀市| 互助| 宣武区| 宝清县| 阜南县| 黄石市| 兰州市| 花莲市| 肇东市| 荃湾区| 杭锦后旗| 视频| 康保县|