找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory: Connections with Geometry and Topology; J. F. Jardine,V. P. Snaith Book 1989 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 懇求
21#
發(fā)表于 2025-3-25 04:10:22 | 只看該作者
Kahler Diferentials and HC1 of Certain Graded K-Algebras,itly in some cases, such as the co-ordinate axes, co-ordinate planes, or certain cusps. Partial results are obtained for general lines or planes through the origin..The appendix by C. Weibel discusses the relationship between my results and Algebraic K-theory.
22#
發(fā)表于 2025-3-25 09:11:21 | 只看該作者
23#
發(fā)表于 2025-3-25 13:35:32 | 只看該作者
Beanspruchung stabf?rmiger Bauteilee reduce it to a duality theorem for etale cohomology groups of the ring of integers of a number field or a curve over a finite field, which is essentially equivalent to the original theorem of Poitou and Tate.
24#
發(fā)表于 2025-3-25 18:02:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:43:48 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:30 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:36 | 只看該作者
1389-2185 ake Louise, Alberta, Canada from December 7 to December 11 of 1987. This meeting was jointly supported by NATO and the Natural Sciences and Engineering Research Council of Canada, and was sponsored in part by the Canadian Mathematical Society. This book is the volume of proceedings for that meeting.
28#
發(fā)表于 2025-3-26 08:40:06 | 只看該作者
29#
發(fā)表于 2025-3-26 14:20:42 | 只看該作者
Erg?nzungen zur H?heren Mathematikthe characteristic of the residue field). Using this result, we prove the finiteness of the prime to p torsion in the second Chow group of certain varieties over p-adic fields. We also prove similar results for other K-cohomology groups.
30#
發(fā)表于 2025-3-26 17:59:18 | 只看該作者
https://doi.org/10.1007/978-3-642-38891-0 representation rings, the behaviour of the canonical form wwith respect to Adams operations and a description of a refinement of Explicit Brauer Induction to produce canonical ‘monomial resolutions’ of representations of finite groups.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道孚县| 仁布县| 湖北省| 文山县| 浏阳市| 陆河县| 光泽县| 新安县| 丰台区| 巫溪县| 闵行区| 甘德县| 平原县| 天气| 鹤峰县| 肇东市| 永平县| 漳平市| 南召县| 泌阳县| 马公市| 昌邑市| 册亨县| 天峨县| 深水埗区| 礼泉县| 奉化市| 芮城县| 武陟县| 彭泽县| 资兴市| 德化县| 分宜县| 灌南县| 漳浦县| 昌黎县| 黑山县| 临邑县| 容城县| 黄浦区| 灯塔市|