找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Integrability, Painlevé Geometry and Lie Algebras; Mark Adler,Pierre Moerbeke,Pol Vanhaecke Book 2004 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: cerebellum
31#
發(fā)表于 2025-3-27 00:19:18 | 只看該作者
32#
發(fā)表于 2025-3-27 02:18:51 | 只看該作者
Algebraic Integrability, Painlevé Geometry and Lie Algebras978-3-662-05650-9Series ISSN 0071-1136 Series E-ISSN 2197-5655
33#
發(fā)表于 2025-3-27 07:47:37 | 只看該作者
34#
發(fā)表于 2025-3-27 10:47:10 | 只看該作者
Kazuhiko Sekita,Masakazu Mitsumurall be used. Since algebraic geometry, mainly the geometry of Abelian varieties, will only show up later and since we will need to do in that case a little more than just a review, we defer that subject to Part II of the book.
35#
發(fā)表于 2025-3-27 15:48:45 | 只看該作者
Supervised Feedforward Networks,d and accessible to the applied community. The basic algebraic-geometric tools that we present here are well-known and can be found scattered around in the excellent books by Fay [52], Lange-Birkenhake [105], Mumford [129], Weil [172], and especially Griffiths and Harris [69].
36#
發(fā)表于 2025-3-27 17:51:12 | 只看該作者
Lie Algebrasll be used. Since algebraic geometry, mainly the geometry of Abelian varieties, will only show up later and since we will need to do in that case a little more than just a review, we defer that subject to Part II of the book.
37#
發(fā)表于 2025-3-27 22:05:25 | 只看該作者
The Geometry of Abelian Varietiesd and accessible to the applied community. The basic algebraic-geometric tools that we present here are well-known and can be found scattered around in the excellent books by Fay [52], Lange-Birkenhake [105], Mumford [129], Weil [172], and especially Griffiths and Harris [69].
38#
發(fā)表于 2025-3-28 05:54:56 | 只看該作者
https://doi.org/10.1007/978-3-662-05650-9Abelian varieties; Lie theory; algebra; curve theory; integrable systems; mathematical physics
39#
發(fā)表于 2025-3-28 06:33:01 | 只看該作者
40#
發(fā)表于 2025-3-28 13:16:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松滋市| 湖口县| 通州区| 伊吾县| 乃东县| 新宁县| 宣武区| 四子王旗| 南投市| 昂仁县| 双牌县| 通海县| 新丰县| 淮南市| 阿尔山市| 定兴县| 迁西县| 林甸县| 怀柔区| 新沂市| 略阳县| 化州市| 镇康县| 三河市| 庄浪县| 凤阳县| 六盘水市| 淳安县| 来宾市| 黄陵县| 静安区| 上杭县| 自治县| 阿拉善盟| 凤城市| 满洲里市| 滁州市| 勃利县| 德惠市| 西贡区| 扶绥县|