找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Integrability, Painlevé Geometry and Lie Algebras; Mark Adler,Pierre Moerbeke,Pol Vanhaecke Book 2004 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
查看: 8619|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:34:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Integrability, Painlevé Geometry and Lie Algebras
影響因子2023Mark Adler,Pierre Moerbeke,Pol Vanhaecke
視頻videohttp://file.papertrans.cn/153/152641/152641.mp4
發(fā)行地址Aimed at a wide readership of mathematicians and physicists, graduate students and professionals.The main thrust of the book is to show how algebraic geometry, Lie theory and Painlevé analysis can be
學(xué)科分類Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Algebraic Integrability, Painlevé Geometry and Lie Algebras;  Mark Adler,Pierre Moerbeke,Pol Vanhaecke Book 2004 Springer-Verlag Berlin Hei
Pindex Book 2004
The information of publication is updating

書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras影響因子(影響力)




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras影響因子(影響力)學(xué)科排名




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras網(wǎng)絡(luò)公開度




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras被引頻次




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras被引頻次學(xué)科排名




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras年度引用




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras年度引用學(xué)科排名




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras讀者反饋




書目名稱Algebraic Integrability, Painlevé Geometry and Lie Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:51 | 只看該作者
Lie Algebrasll be used. Since algebraic geometry, mainly the geometry of Abelian varieties, will only show up later and since we will need to do in that case a little more than just a review, we defer that subject to Part II of the book.
板凳
發(fā)表于 2025-3-22 02:14:35 | 只看該作者
Poisson Manifoldsnctions on .. and (.., ..., .., .. ..., ..) are linear coordinates on ... He observed that if . and . are two first integrals of a mechanical system (defined on ..) then their . {.} is also a first integral. Notice that the Poisson bracket also allows one to describe the equations of motion in their
地板
發(fā)表于 2025-3-22 08:02:43 | 只看該作者
5#
發(fā)表于 2025-3-22 09:30:39 | 只看該作者
6#
發(fā)表于 2025-3-22 13:40:00 | 只看該作者
A.c.i. Systemsex) momentum map is the best possible complex analogue of the geometry that appears in the Liouville Theorem (Theorem 4.28). Namely, in many relevant examples the generic complexified fiber is an affine part of an . (a compact algebraic torus, see Chapter 5) and the integrable vector fields are tran
7#
發(fā)表于 2025-3-22 20:47:15 | 只看該作者
8#
發(fā)表于 2025-3-23 00:18:23 | 只看該作者
Periodic Toda Lattices Associated to Cartan Matricesone, {.., ..} = {.., ..} = 0 and {.., ..} = .., where 1 ≤ . ≤ .. For a mechanical interpretation, consider . unit mass particles on a circle that are connected by exponential springs. In [33], Bogoyavlensky proposed a Lie algebraic generalization, where the original Toda lattice corresponds to the r
9#
發(fā)表于 2025-3-23 05:02:18 | 只看該作者
An Invitation to Deep Active Learninglid in the real case. For a complex version of the Liouville Theorem, we refer to Section 6.3. Lax equations, which often represent a vector field of an integrable system, are the subject of Sections 4.4 and 4.5.
10#
發(fā)表于 2025-3-23 08:55:44 | 只看該作者
Deep Belief Nets in C++ and CUDA C: Volume 2slation invariant, when restricted to any of these tori. Such integrable systems are the main topic of this book, and we will call them algebraic completely integrable systems, following the original definition of Adler and van Moerbeke (see [14]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣庄市| 长治市| 宜州市| 江陵县| 博野县| 明水县| 南城县| 青田县| 金华市| 疏附县| 阿瓦提县| 鄂温| 化州市| 新巴尔虎右旗| 安陆市| 富阳市| 开原市| 富宁县| 嘉鱼县| 岗巴县| 绥棱县| 临沂市| 平武县| 鹤岗市| 滕州市| 泰和县| 乡城县| 磴口县| 页游| 枞阳县| 屏南县| 蒲江县| 新竹县| 方正县| 池州市| 南乐县| 水城县| 富民县| 龙胜| 麻阳| 棋牌|