找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra II Ring Theory; Vol. 2: Ring Theory Carl Faith Book 1976 Springer-Verlag Berlin Heidelberg 1976 Ring.algebra

[復(fù)制鏈接]
樓主: 粘上
21#
發(fā)表于 2025-3-25 05:30:01 | 只看該作者
https://doi.org/10.1007/978-3-658-32050-8rem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of K?the-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.
22#
發(fā)表于 2025-3-25 10:08:18 | 只看該作者
23#
發(fā)表于 2025-3-25 13:48:37 | 只看該作者
Modules of Finite Length and their Endomorphism Ringsrem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of K?the-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.
24#
發(fā)表于 2025-3-25 19:03:39 | 只看該作者
Semiprimitive Rings, Semiprime Rings, and the Nil Radicalrimitive) rings 26.6 and 26.13. The (McCoy) prime radical of a ring is defined to be the intersection of the prime ideals, and is characterized as the set of all strongly nilpotent elements of . (theorem of Levitzki 26.5). When . is commutative, this is just the set of nilpotent elements.
25#
發(fā)表于 2025-3-25 21:00:12 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/a/image/152474.jpg
26#
發(fā)表于 2025-3-26 00:44:39 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:27 | 只看該作者
Einleitung Datenschutz und Digitalisierung,devoted to ring theory. A few brief indications of the overlap with Jacobson might be helpful. The revised edition [64] of Jacobson [55] contained three appendices, which overlaps with us in the main Goldie-Lesieur-Croisot theorem (Chapter 9), the Faith-Utumi theorem (Chapter 10), the Wedderburn Fac
28#
發(fā)表于 2025-3-26 09:48:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:40:13 | 只看該作者
30#
發(fā)表于 2025-3-26 19:20:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河池市| 申扎县| 青海省| 大同市| 迭部县| 新昌县| 罗平县| 永善县| 边坝县| 云林县| 铁岭县| 栾川县| 彭阳县| 望谟县| 屏山县| 蕉岭县| 咸丰县| 连城县| 静海县| 敦煌市| 清水县| 九龙坡区| 江西省| 南华县| 双峰县| 儋州市| 临沂市| 内丘县| 远安县| 额济纳旗| 天镇县| 扬中市| 富平县| 洛川县| 敦化市| 德钦县| 武定县| 旬阳县| 大化| 独山县| 尉犁县|