找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra II Ring Theory; Vol. 2: Ring Theory Carl Faith Book 1976 Springer-Verlag Berlin Heidelberg 1976 Ring.algebra

[復(fù)制鏈接]
樓主: 粘上
21#
發(fā)表于 2025-3-25 05:30:01 | 只看該作者
https://doi.org/10.1007/978-3-658-32050-8rem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of K?the-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.
22#
發(fā)表于 2025-3-25 10:08:18 | 只看該作者
23#
發(fā)表于 2025-3-25 13:48:37 | 只看該作者
Modules of Finite Length and their Endomorphism Ringsrem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of K?the-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.
24#
發(fā)表于 2025-3-25 19:03:39 | 只看該作者
Semiprimitive Rings, Semiprime Rings, and the Nil Radicalrimitive) rings 26.6 and 26.13. The (McCoy) prime radical of a ring is defined to be the intersection of the prime ideals, and is characterized as the set of all strongly nilpotent elements of . (theorem of Levitzki 26.5). When . is commutative, this is just the set of nilpotent elements.
25#
發(fā)表于 2025-3-25 21:00:12 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/a/image/152474.jpg
26#
發(fā)表于 2025-3-26 00:44:39 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:27 | 只看該作者
Einleitung Datenschutz und Digitalisierung,devoted to ring theory. A few brief indications of the overlap with Jacobson might be helpful. The revised edition [64] of Jacobson [55] contained three appendices, which overlaps with us in the main Goldie-Lesieur-Croisot theorem (Chapter 9), the Faith-Utumi theorem (Chapter 10), the Wedderburn Fac
28#
發(fā)表于 2025-3-26 09:48:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:40:13 | 只看該作者
30#
發(fā)表于 2025-3-26 19:20:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸丰县| 汉源县| 西林县| 莱阳市| 象州县| 湾仔区| 宁南县| 乳山市| 桂平市| 滁州市| 健康| 海林市| 外汇| 江西省| 太仆寺旗| 渭南市| 邹城市| 本溪市| 阜新| 鄄城县| 平山县| 龙州县| 师宗县| 金寨县| 宽城| 沈丘县| 阿克陶县| 驻马店市| 玉溪市| 民勤县| 婺源县| 宁晋县| 邵东县| 隆子县| 阿尔山市| 寻乌县| 鹤山市| 门头沟区| 邹平县| 横山县| 泾川县|