找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra II Ring Theory; Vol. 2: Ring Theory Carl Faith Book 1976 Springer-Verlag Berlin Heidelberg 1976 Ring.algebra

[復(fù)制鏈接]
樓主: 粘上
31#
發(fā)表于 2025-3-26 21:59:40 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:55 | 只看該作者
https://doi.org/10.1007/978-3-322-96680-3map . is superfluous if and only if . ? rad . 18.3. A module . is a . (proj. cov.) of . provided that . is projective and there exists a minimal epimorphism .. This notion is dual to that of injective hull, and yet, although each .-module has an injective hull, projective covers of modules may fail
33#
發(fā)表于 2025-3-27 06:02:26 | 只看該作者
https://doi.org/10.1007/978-3-663-13621-7tely presented left module over a ring . is a direct sum of uniserial modules: this happens iff . is itself such a direct sum both as right and left module, that is, iff . is serial. (See Section 0 for definitions.) In this case, then for any finitely generated submodule . of a finitely generated pr
34#
發(fā)表于 2025-3-27 12:27:31 | 只看該作者
35#
發(fā)表于 2025-3-27 17:10:45 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:36 | 只看該作者
Modules of Finite Length and their Endomorphism Ringsrem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of K?the-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.
37#
發(fā)表于 2025-3-28 00:51:58 | 只看該作者
Semilocal Rings and the Jacobson Radicalcal of a ring; (3) local rings 18.10; (4) semiprimary rings 18.12; (5) the theorem of Hopkins and Levitzki 18.13; (6) the Krull-Schmidt or Unique Decomposition Theorem 18.18; (7) the basic module and ring 18.21–23; (8) the Chinese remainder theorem 18.30–32 and primary decomposable rings 18.36–37; a
38#
發(fā)表于 2025-3-28 04:26:41 | 只看該作者
Quasinjective Modules and Selfinjective Ringsle which is injective modulo annihilator, and every semisimple module, is QI (see 19.2). The QI modules coincide with the class of fully invariant sub-modules of injective modules 19.3. A module which is finitely generated over endomorphism ring is said to be . Any finendo QI module is injective mod
39#
發(fā)表于 2025-3-28 09:31:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:34:39 | 只看該作者
Projective Covers and Perfect Ringsmap . is superfluous if and only if . ? rad . 18.3. A module . is a . (proj. cov.) of . provided that . is projective and there exists a minimal epimorphism .. This notion is dual to that of injective hull, and yet, although each .-module has an injective hull, projective covers of modules may fail
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆德县| 彭泽县| 襄樊市| 永靖县| 黄冈市| 瑞昌市| 宝山区| 慈利县| 义马市| 绥阳县| 海城市| 常州市| 会东县| 申扎县| 临夏县| 稷山县| 昌吉市| 卢湾区| 昆明市| 金塔县| 雅安市| 张掖市| 渝中区| 庆云县| 忻城县| 尚义县| 禄劝| 济宁市| 永寿县| 石家庄市| 金乡县| 岫岩| 洞头县| 德兴市| 垣曲县| 兰溪市| 博白县| 彭州市| 监利县| 福州市| 平陆县|