找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Adversarial Machine Learning; Yevgeniy Vorobeychik,Murat Kantarcioglu Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:07:27 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:30 | 只看該作者
Eric J. Kostelich,Ernest Barreto spam, phishing, and malware detectors trained to distinguish between benign and malicious instances, with adversaries manipulating the nature of the objects, such as introducing clever word misspellings or substitutions of code regions, in order to be misclassified as benign.
13#
發(fā)表于 2025-3-23 18:43:39 | 只看該作者
14#
發(fā)表于 2025-3-23 23:58:38 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guanthey take place . learning, when the learned model is in operational use. We now turn to another broad class of attacks which target the learning . by tampering directly with data used for training these.
15#
發(fā)表于 2025-3-24 03:09:18 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guan. as follows. We start with the pristine training dataset . of . labeled examples. Suppose that an unknown proportion α of the dataset . is then corrupted arbitrarily (i.e., both feature vectors and labels may be corrupted), resulting in a corrupted dataset .. The goal is to learn a model . on the c
16#
發(fā)表于 2025-3-24 08:13:38 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guannatural language processing [Goodfellow et al., 2016]. This splash was soon followed by a series of illustrations of fragility of deep neural network models to small . changes to inputs. While initially these were seen largely as robustness tests rather than modeling actual attacks, the language of
17#
發(fā)表于 2025-3-24 11:49:01 | 只看該作者
18#
發(fā)表于 2025-3-24 17:32:31 | 只看該作者
Book 2018 learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety cri
19#
發(fā)表于 2025-3-24 22:36:48 | 只看該作者
Decision Support via Fuzzy Technologyike, trying to maintain productivity despite external threats, and .the bad guys—who spread malware, send spam and phishing emails, hack into vulnerable computing devices, steal data, or execute denial-of-service attacks, for whatever malicious ends they may have.
20#
發(fā)表于 2025-3-25 01:08:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萍乡市| 桐梓县| 朝阳区| 公主岭市| 德州市| 咸阳市| 财经| 天镇县| 七台河市| 泰来县| 调兵山市| 客服| 东至县| 翁牛特旗| 靖州| 固原市| 罗城| 海丰县| 桦南县| 城步| 石屏县| 宾阳县| 宜昌市| 蛟河市| 桃江县| 中阳县| 申扎县| 丘北县| 桐庐县| 三穗县| 永泰县| 广宁县| 阿合奇县| 中江县| 鲁山县| 德庆县| 会理县| 贡觉县| 禄丰县| 苍梧县| 郁南县|