找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Adversarial Machine Learning; Yevgeniy Vorobeychik,Murat Kantarcioglu Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
查看: 39504|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:27:16 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Adversarial Machine Learning
影響因子2023Yevgeniy Vorobeychik,Murat Kantarcioglu
視頻videohttp://file.papertrans.cn/151/150410/150410.mp4
學(xué)科分類Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Adversarial Machine Learning;  Yevgeniy Vorobeychik,Murat Kantarcioglu Book 2018 Springer Nature Switzerland AG 2018
影響因子.The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicius objects they develop...The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adver
Pindex Book 2018
The information of publication is updating

書目名稱Adversarial Machine Learning影響因子(影響力)




書目名稱Adversarial Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Adversarial Machine Learning網(wǎng)絡(luò)公開度




書目名稱Adversarial Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Adversarial Machine Learning被引頻次




書目名稱Adversarial Machine Learning被引頻次學(xué)科排名




書目名稱Adversarial Machine Learning年度引用




書目名稱Adversarial Machine Learning年度引用學(xué)科排名




書目名稱Adversarial Machine Learning讀者反饋




書目名稱Adversarial Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:27 | 只看該作者
Machine Learning Preliminaries,To keep this book reasonably self-contained, we start with some machine learning basics. Machine learning is often broadly divided into three major areas: supervised learning, unsupervised learning, and reinforcement learning. While in practice these divisions are not always clean, they provide a good point of departure for our purposes.
板凳
發(fā)表于 2025-3-22 03:46:09 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:50:23 | 只看該作者
Eric J. Kostelich,Ernest Barreto spam, phishing, and malware detectors trained to distinguish between benign and malicious instances, with adversaries manipulating the nature of the objects, such as introducing clever word misspellings or substitutions of code regions, in order to be misclassified as benign.
6#
發(fā)表于 2025-3-22 15:40:50 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guanthey take place . learning, when the learned model is in operational use. We now turn to another broad class of attacks which target the learning . by tampering directly with data used for training these.
7#
發(fā)表于 2025-3-22 19:09:43 | 只看該作者
8#
發(fā)表于 2025-3-22 21:39:37 | 只看該作者
9#
發(fā)表于 2025-3-23 05:11:01 | 只看該作者
978-3-031-00452-0Springer Nature Switzerland AG 2018
10#
發(fā)表于 2025-3-23 09:16:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰州市| 铜陵市| 肃宁县| 信丰县| 鄯善县| 宜川县| 米脂县| 淮南市| 诏安县| 沙湾县| 区。| 甘孜| 弥勒县| 临江市| 黎川县| 中方县| 全州县| 卓尼县| 井冈山市| 九江市| 靖边县| 满洲里市| 富川| 杂多县| 绥芬河市| 米易县| 梁河县| 莒南县| 满城县| 瑞昌市| 西丰县| 肥东县| 竹北市| 蓬莱市| 绥江县| 西青区| 三亚市| 汕尾市| 江北区| 苗栗县| 高雄市|