找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Adversarial Machine Learning; Yevgeniy Vorobeychik,Murat Kantarcioglu Book 2018 Springer Nature Switzerland AG 2018

[復制鏈接]
11#
發(fā)表于 2025-3-23 13:07:27 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:30 | 只看該作者
Eric J. Kostelich,Ernest Barreto spam, phishing, and malware detectors trained to distinguish between benign and malicious instances, with adversaries manipulating the nature of the objects, such as introducing clever word misspellings or substitutions of code regions, in order to be misclassified as benign.
13#
發(fā)表于 2025-3-23 18:43:39 | 只看該作者
14#
發(fā)表于 2025-3-23 23:58:38 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guanthey take place . learning, when the learned model is in operational use. We now turn to another broad class of attacks which target the learning . by tampering directly with data used for training these.
15#
發(fā)表于 2025-3-24 03:09:18 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guan. as follows. We start with the pristine training dataset . of . labeled examples. Suppose that an unknown proportion α of the dataset . is then corrupted arbitrarily (i.e., both feature vectors and labels may be corrupted), resulting in a corrupted dataset .. The goal is to learn a model . on the c
16#
發(fā)表于 2025-3-24 08:13:38 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guannatural language processing [Goodfellow et al., 2016]. This splash was soon followed by a series of illustrations of fragility of deep neural network models to small . changes to inputs. While initially these were seen largely as robustness tests rather than modeling actual attacks, the language of
17#
發(fā)表于 2025-3-24 11:49:01 | 只看該作者
18#
發(fā)表于 2025-3-24 17:32:31 | 只看該作者
Book 2018 learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety cri
19#
發(fā)表于 2025-3-24 22:36:48 | 只看該作者
Decision Support via Fuzzy Technologyike, trying to maintain productivity despite external threats, and .the bad guys—who spread malware, send spam and phishing emails, hack into vulnerable computing devices, steal data, or execute denial-of-service attacks, for whatever malicious ends they may have.
20#
發(fā)表于 2025-3-25 01:08:35 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 12:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南召县| 刚察县| 浠水县| 运城市| 汾西县| 汕头市| 家居| 康平县| 台安县| 沈阳市| 游戏| 康乐县| 阳新县| 秦安县| 甘谷县| 华容县| 如东县| 威海市| 辽中县| 仁寿县| 临武县| 乌拉特前旗| 咸宁市| 固始县| 惠来县| 龙陵县| 织金县| 宣化县| 牡丹江市| 时尚| 修武县| 天柱县| 五原县| 周口市| 江西省| 教育| 景宁| 离岛区| 梁河县| 达孜县| 洛宁县|