找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: 小故障
51#
發(fā)表于 2025-3-30 12:11:59 | 只看該作者
52#
發(fā)表于 2025-3-30 13:09:07 | 只看該作者
Gender-Hierarchy Particle Swarm Optimizer Based on Punishmenttimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Experimental results show that the proposed algorithm shows better behaviors as compared to the standard PSO, tribes-based PSO and GH-PSO with tribes.
53#
發(fā)表于 2025-3-30 16:50:52 | 只看該作者
Tidal Marshes as Outwelling/Pulsing Systemsing boundedness one confirms a dominant oscillating behavior of both populations dynamics performance. However, the oscillating frequency results to be unknown. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra.
54#
發(fā)表于 2025-3-30 23:00:48 | 只看該作者
55#
發(fā)表于 2025-3-31 02:47:37 | 只看該作者
56#
發(fā)表于 2025-3-31 08:59:09 | 只看該作者
57#
發(fā)表于 2025-3-31 12:56:45 | 只看該作者
Biomechanics Modeling and Concepts, may be influenced due to load imbalance. In this paper we proposed approach try to further optimize this scheduling strategy by using quantum-behaved particle swarm optimization. And compared with SSAC and MINMIN in the simulation experiment; results indicate that our proposed technique is a better solution for reducing the makespan considerably.
58#
發(fā)表于 2025-3-31 14:48:55 | 只看該作者
Simulating Human Social Behaviorsjobs in each group and the sequence of groups. Three different lower bounds are developed to evaluate the performance of the proposed PSO algorithm. Limited numerical results show that the proposed PSO algorithm performs well for all test problems.
59#
發(fā)表于 2025-3-31 18:57:40 | 只看該作者
60#
發(fā)表于 2025-3-31 23:22:11 | 只看該作者
Paolo Cattorini,Roberto Mordaccing is realized through a statistical mapping, between the parameter set and the KNOB, learned by a radial basis function neural network (RBFNN) simulation model. In this way, KNOB provides an easy way to tune PSO directly by its parameter setting. A simple application of KNOB to promote is presented to verify the mechanism of KNOB.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝义市| 祁连县| 喜德县| 如皋市| 清远市| 临潭县| 吉林市| 连城县| 东台市| 绥中县| 阳新县| 湄潭县| 西畴县| 南岸区| 从化市| 宁安市| 横山县| 旺苍县| 大冶市| 扎鲁特旗| 湖州市| 琼中| 大理市| 胶州市| 盈江县| 同江市| 安顺市| 河北省| 龙口市| 邢台县| 新化县| 黄大仙区| 绥滨县| 龙州县| 湟源县| 宝坻区| 大洼县| 航空| 江都市| 临猗县| 樟树市|