找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: 小故障
31#
發(fā)表于 2025-3-26 22:01:07 | 只看該作者
Paolo Cattorini,Roberto Mordacciization (PSO) to construct a two-population PSO model called PSOPB, composed of the host and the parasites population. In this model, the two populations exchange particles according to the fitness sorted in a certain number of iterations. In order to embody the law of "survival of the fittest" in b
32#
發(fā)表于 2025-3-27 04:18:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:21:44 | 只看該作者
34#
發(fā)表于 2025-3-27 10:39:31 | 只看該作者
https://doi.org/10.1007/978-94-015-8344-2sed algorithm, the social part and recognition part of PSO both are modified in order to accelerate the convergence and improve the accuracy of the optimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Expe
35#
發(fā)表于 2025-3-27 16:14:27 | 只看該作者
36#
發(fā)表于 2025-3-27 18:20:28 | 只看該作者
37#
發(fā)表于 2025-3-28 01:06:55 | 只看該作者
Biomechanics Modeling and Concepts,d are not continuously available for computation, achieving a better make-span is a key issue. The existing algorithm SSAC has proved to be a good trade-off between availability and responsiveness while maintaining a good performance in the average response time of multiclass tasks. But the makespan
38#
發(fā)表于 2025-3-28 02:22:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:12:08 | 只看該作者
https://doi.org/10.1007/978-3-319-15096-3e Swarm Optimization (PSO). QPSO performs better than normal PSO on several benchmark problems. However, QPSO’s quantum bit(Qubit) is still in Hilbert space’s unit circle with only one variable, so the quantum properties have been undermined to a large extent. In this paper, the Bloch Sphere encodin
40#
發(fā)表于 2025-3-28 12:55:51 | 只看該作者
S. M. Niaz Arifin,Gregory R. Madeyproved particle swarm optimization (PSO) algorithm. To enhance the exploitation ability of PSO, a stochastic iterated local search is incorporated. To improve the exploration ability of PSO, a population update method is applied to replace non-promising particles. In addition, a solution pool that s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
烟台市| 大安市| 定州市| 镇远县| 颍上县| 中江县| 汾西县| 屯留县| 莱西市| 同心县| 福泉市| 禹城市| 宁化县| 浦东新区| 广宗县| 望江县| 辽宁省| 千阳县| 固始县| 晋州市| 陆川县| 清河县| 五大连池市| 博野县| 普格县| 土默特左旗| 论坛| 宿松县| 石渠县| 庄浪县| 通化市| 威信县| 吉隆县| 南开区| 吉林省| 吉安县| 德庆县| 巧家县| 赤壁市| 河源市| 肥西县|