找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: 小故障
31#
發(fā)表于 2025-3-26 22:01:07 | 只看該作者
Paolo Cattorini,Roberto Mordacciization (PSO) to construct a two-population PSO model called PSOPB, composed of the host and the parasites population. In this model, the two populations exchange particles according to the fitness sorted in a certain number of iterations. In order to embody the law of "survival of the fittest" in b
32#
發(fā)表于 2025-3-27 04:18:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:21:44 | 只看該作者
34#
發(fā)表于 2025-3-27 10:39:31 | 只看該作者
https://doi.org/10.1007/978-94-015-8344-2sed algorithm, the social part and recognition part of PSO both are modified in order to accelerate the convergence and improve the accuracy of the optimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Expe
35#
發(fā)表于 2025-3-27 16:14:27 | 只看該作者
36#
發(fā)表于 2025-3-27 18:20:28 | 只看該作者
37#
發(fā)表于 2025-3-28 01:06:55 | 只看該作者
Biomechanics Modeling and Concepts,d are not continuously available for computation, achieving a better make-span is a key issue. The existing algorithm SSAC has proved to be a good trade-off between availability and responsiveness while maintaining a good performance in the average response time of multiclass tasks. But the makespan
38#
發(fā)表于 2025-3-28 02:22:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:12:08 | 只看該作者
https://doi.org/10.1007/978-3-319-15096-3e Swarm Optimization (PSO). QPSO performs better than normal PSO on several benchmark problems. However, QPSO’s quantum bit(Qubit) is still in Hilbert space’s unit circle with only one variable, so the quantum properties have been undermined to a large extent. In this paper, the Bloch Sphere encodin
40#
發(fā)表于 2025-3-28 12:55:51 | 只看該作者
S. M. Niaz Arifin,Gregory R. Madeyproved particle swarm optimization (PSO) algorithm. To enhance the exploitation ability of PSO, a stochastic iterated local search is incorporated. To improve the exploration ability of PSO, a population update method is applied to replace non-promising particles. In addition, a solution pool that s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安图县| 白城市| 仲巴县| 大邑县| 天津市| 贡嘎县| 甘洛县| 永城市| 峨眉山市| 绥化市| 台北县| 饶阳县| 隆化县| 德江县| 东阳市| 千阳县| 广宁县| 读书| 彭泽县| 八宿县| 沙河市| 阳新县| 玛纳斯县| 布拖县| 临高县| 理塘县| 浏阳市| 罗源县| 镇雄县| 油尖旺区| 黑龙江省| 房产| 疏附县| 宝山区| 金堂县| 玛多县| 车致| 高平市| 芮城县| 喜德县| 建阳市|