找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 4th International Co Ying Tan,Yuhui Shi,Hongwei Mo Conference proceedings 2013 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
查看: 49709|回復(fù): 62
樓主
發(fā)表于 2025-3-21 20:06:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Swarm Intelligence
期刊簡(jiǎn)稱4th International Co
影響因子2023Ying Tan,Yuhui Shi,Hongwei Mo
視頻videohttp://file.papertrans.cn/150/149948/149948.mp4
發(fā)行地址Fast track conference proceedings.Unique visibility.State of the art research
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Swarm Intelligence; 4th International Co Ying Tan,Yuhui Shi,Hongwei Mo Conference proceedings 2013 Springer-Verlag Berlin Heide
影響因子This book and its companion volume, LNCS vols. 7928 and 7929 constitute the proceedings of the 4th International Conference on Swarm Intelligence, ICSI 2013, held in Harbin, China in June 2013. The 129 revised full papers presented were carefully reviewed and selected from 268 submissions. The papers are organized in 22 cohesive sections covering all major topics of swarm intelligence research and developments. The following topics are covered in this volume: analysis of swarm intelligence based algorithms, particle swarm optimization, applications of particle swarm optimization algorithms, ant colony optimization algorithms, biogeography-based optimization algorithms, novel swarm-based search methods, bee colony algorithms, differential evolution, neural networks, fuzzy methods, evolutionary programming and evolutionary games.
Pindex Conference proceedings 2013
The information of publication is updating

書目名稱Advances in Swarm Intelligence影響因子(影響力)




書目名稱Advances in Swarm Intelligence影響因子(影響力)學(xué)科排名




書目名稱Advances in Swarm Intelligence網(wǎng)絡(luò)公開度




書目名稱Advances in Swarm Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Swarm Intelligence被引頻次




書目名稱Advances in Swarm Intelligence被引頻次學(xué)科排名




書目名稱Advances in Swarm Intelligence年度引用




書目名稱Advances in Swarm Intelligence年度引用學(xué)科排名




書目名稱Advances in Swarm Intelligence讀者反饋




書目名稱Advances in Swarm Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:05:31 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:06 | 只看該作者
5#
發(fā)表于 2025-3-22 12:06:03 | 只看該作者
Conception optimale de structures data, and then the particle swarm optimization algorithm is applied for piecewise area division and parameter optimization of the model. Simulation result shows that compared with traditional inversion method, better practicability and the higher significant wave height inversion precision are obtained by the proposed method.
6#
發(fā)表于 2025-3-22 16:37:34 | 只看該作者
,Introduction à l’optimisation de formes,e, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.
7#
發(fā)表于 2025-3-22 17:22:53 | 只看該作者
8#
發(fā)表于 2025-3-23 00:28:47 | 只看該作者
Cask Theory Based Parameter Optimization for Particle Swarm Optimizationt can be used to search the tuned parameters such as inertia weight ., acceleration coefficients c. and c., and so on. This method considers the cask theory to achieve a better optimization performance. Several famous benchmarks were used to validate the proposed method and the simulation results showed the efficiency of the proposed method.
9#
發(fā)表于 2025-3-23 03:54:16 | 只看該作者
A Piecewise Linearization Method of Significant Wave Height Based on Particle Swarm Optimization data, and then the particle swarm optimization algorithm is applied for piecewise area division and parameter optimization of the model. Simulation result shows that compared with traditional inversion method, better practicability and the higher significant wave height inversion precision are obtained by the proposed method.
10#
發(fā)表于 2025-3-23 07:59:32 | 只看該作者
Parameter Identification of RVM Runoff Forecasting Model Based on Improved Particle Swarm Optimizatie, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 芮城县| 刚察县| 广东省| 玛沁县| 德兴市| 博白县| 汝城县| 贺州市| 紫金县| 烟台市| 松溪县| 舟山市| 青岛市| 兰溪市| 饶阳县| 罗平县| 普陀区| 江北区| 罗源县| 新闻| 雅安市| 顺昌县| 涪陵区| 阿克陶县| 驻马店市| 双江| 铁力市| 陵水| 辽阳县| 阿坝县| 同心县| 吉林市| 张家界市| 秦安县| 新疆| 汽车| 韶山市| 两当县| 阆中市| 德阳市|